Три признака хорошей стратегии в условиях неопределенности. Стратегия в условиях неопределенности

Одним из важнейших условий принятия эффективного решения, направленного на достижение цели во временной перспективе, является наличие соответствующего объема релевантной информации. Неполная информация, невозможность достоверного предсказания будущих событий и факторов, могущих повлиять на результат, к которому приводит принимаемое решение, являются признаками неопределенности. Достаточно большая часть управляющих решений принимается в условиях неопределенности. Потенциал неопределенности - внешняя среда организации.

Принятие решений в условиях неопределенности связывается с понятием риска и производится с помощью методов исследования операций и теории статистических решений. В общем виде задача принятия решения в условиях неопределенности представляется в виде таблицы эффективности (табл.1).

Таблица1.

О 1 О 2 ... O n
p 1 a 11 a 12 ... a 1 n
p 2 a 21 a 22 ... a 2 n
... ... ... ... ...
p m a m1 a m2 ... a mn

где O n - условия обстановки, которые точно неизвестны, но о которых можно сделать n-предложений (спрос, количество поставщиков, удовлетворенность материалами);

P m -возможные стратегии, линии поведения решения.

Каждой паре стратегии и обстановки, соответствуют выигрыши -A mn .

Выигрыши, указанные в таблице, являются рассчитанными показателями эффективности стратегии (решения) в различных обстановках.

Представленная задача направлена на принятие решений при разработке планов развития предприятий, разработке производственных программ, планов выпуска новых видов продукции, направленности инноваций, выбора стратегий страхования, инвестиции, средств и т.д.

В теории статистических решений применяется специальный показатель риска, который показывает выгодность принимаемой стратегии в данной обстановке с учетом ее неопределенности. Риск рассчитывается как разность между ожидаемым результатом действий при наличии точных данных обстановки и результатом, который может быть достигнут, если эти данные неопределенны. По этой разности рассчитывается таблица рисков выпуска нового вида продукции. Таблица рисков дает возможность оценить качество различных решений и установить полноту реализации возможностей при наличии риска. Выбор наилучшего решения зависит от степени неопределенности.

В зависимости от степени неопределенности обстановки различают 3 варианта принятия решений:

1. Выбор оптимального решения, когда вероятности возможных вариантов обстановки известны. Оптимальное решение определяется по max сумм произведений вероятностей различных вариантов обстановки P(O 1) на соответствующие значения выигрышей А (таблица 6 эффективности) по каждому решению.

2. Выбор оптимального решения, когда вероятности возможных вариантов обстановки неизвестны.

3. Выбор оптимального решения по принципам подхода к оценке результата действий.

В условиях неизвестной вероятности обстановки возможно принятие следующих решений:

а) max-min или “рассчитывай на худшее“ - выбор решения, гарантирующий выигрыш в любых условиях, не меньше, чем наибольший возможный в худших условиях;

б) min max риск в любых условиях. За оптимальное принимается решение, для которого риск, max при различных вариантах обстановки, кажется минимальным.

За оптимальное решение в зависимости от линии ориентации ЛПР принимается решение, для которого показатель G (критерий пессимизма - оптимизма Гурвица) окажется максимальным:

где - минимальный выигрыш, соответствующий решению m;

Максимальный выигрыш, соответствующий решению m;

k - коэффициент, характеризующий линию поведения (ориентации) ЛПР, .

Графически значение k по отношению к линии поведения можно интерпретировать следующей схемой:

значение k


0 0,25 0,5 0,75 1

Линия ориентации в расчете

на лучшее на худшее

Задача:

Предлагается 3 варианта вложения инвестиций:

1) Вложить все имеющиеся средства в акции компании “Нефть-АГ”, что гарантирует высокий доход при соответствующей обстановке;

2) Вложить все средства в ГКО при гарантии низкого и стабильного дохода;

3) Вложить часть средств в акции “Нефть-АГ”, часть в ГКО - т.е. произвести диверсификацию портфеля средств.

Перспектива обозначена тремя вариантами обстановки (исхода событий).

Принять решение по проблеме вложения инвестиций, имея в качестве исходных данных таблицу выигрышей (табл.2).

Таблица 2.

Pi/Oi O 1 O 2 O 3
P 1 0.99 0.1
P 2 0.5 0.5 0.3
P 3 0.25 0.7 0.4

P i - вариант решения;

O i - вариант обстановки;

O 1 - компания “Нефть-АГ” - обанкротилась, ГКО - приносит стабильный доход.

O 2 - компания ”Нефть-АГ” - процветает;

O 3 - кризис в экономике.

Определим оптимальное решение, при котором выигрыш в любых условиях будет не меньше, чем наибольший возможный в худших условиях (max-min).

Из табл. 2 для решения P 1 наименьший выигрыш составит 0, для P 2 - 0.3, для P 3 - 0.25.

Наибольший возможный выигрыш при самом плохом стечении обстоятельств составит 0.3, что соответствует принятию решения P 2 , т.е. при любых вариантах обстановок решение P 2 будет не самым худшим.

Оптимальное решение при условии, что риск окажется минимальным из максимальных его значений при различных вариантах решений определяется из табл.7. Предварительно рассчитывается матрица рынков. При этом максимальный риск при принятии решения P 1 - 0.5; при P 2 - 0.49; при P 3 - 0.29. Из ряда максимальных рисков за оптимальное принимается решение P 3 , имеющее минимальный уровень риска 0,29.

Рассчитаем критерий пессимизма - оптимизма Гурвица для различных вариантов решений в зависимости от значения принятого коэффициента k.

Для решения P 1

Решение:

Рассчитаем матрицу рисков вложения инвестиций (табл.3).

Таблица3.

Pi/Oi O 1 O 2 O 3
P 1 0.5-0=0.5 0.99-0.99=0 0.4-0.1=0.3
P 2 0.5-0.5=0 0.99-0.5=0.49 0.4-0.3=0.1
P 3 0.5-0.25=0.25 0.99-0.7=0.29 0.4-0.4=0

При условии равновероятности обстановок их вероятности равны и составляют:

P(O 1)=P(O 2)=P(O 3)=0.33

Математически ожидания выигрышей при условии равновероятности обстановок определятся из выражения:

W i =P(O i)*A ij ,

где P(O i)-вероятность будущей обстановки;

A ij -выигрыш, соответствующий i-ому решению при j-той обстановке.

W 1 =0.33*0+0.33*0.99+0.33*0.1=0.3597

W 2 =0.33*0.5+0.33*0.5+0.33*0.3=0.329

W 3 =0.33*0.25+0.33*0.7+0.33*0.4=0.445

В условиях равновероятности будущих обстановок наиболее оптимальным является решение P 3.

При других значениях вероятностей обстановок решение может быть другим.

Выбор решения по критерию Гурвица:

для решения P 1: G 1 =0,495;

для решения P 2: G 2 =0,5*0,3+(1-0,5)*0,5=0,4;

для решения P 3: G 3 =0,5*0,25+(1-0,5)*0,7=0,475.

При k=0,5 за оптимальное принимается решение P 1 .

Аналогично рассчитываются значения G i при других значениях коэффициента.

Полученные значения G i сводим в таблицу 4.

Таблица4.

G i при заданных k i
P i /k i 0.00 0.25 0.5 0.75 1.00
P i 0.99 0.743 0.495 0.362
P 2 0.5 0.45 0.4 0.35 0.3
P 3 0.7 0.587 0.475 0.362 0.25
Выбранное решение P 1 P 1 P 1 P 1 P 3 P 2

Лицо, принимающее решение в соответствии с выбранным k i за оптимальное принимает решение, имеющее максимальное значение G i . При k i =0,75 - G max =0,362. За оптимальное принимается решение Р 1 или Р 3 .

См. П.Н. Брусов, п. 3.8., А.Н. Гармаш, п. 3.3.2.

Неопределенность будем рассматривать как такое состояние знаний лица, принимающего решения (ЛПР), при котором одно или несколько альтернативных решений приводят к блоку возможных результатов, соответствующих различным состояниям внешней среды («природы»), вероятности которых неизвестны. Обычно это происходит потому, что отсутствуют надежные данные, на основании которых вероятности могли бы быть вычислены апостериори, а также потому, что нет каких-либо способов вывести вероятности априори. В этих условиях для определения наилучших, так называемых рациональных, решений можно использовать элементы теории игр, в частности, игры с природой. В них один игрок (человек) старается действовать осмотрительно, а второй игрок (природа) дей­ствует случайно.

Игры с природой – это игры, в которых неопределенность вызва­на не сознательным противодействием противника, а недостаточной осведомленностью об условиях, в которых действуют стороны. Например, заранее неизвестна погода в некотором регионе или покупательский спрос на некоторую продукцию.

Условия такой игры обычно представляются таблицей решений , в которой строки А 1 , А 2 , ..., А m соответствуют стратегиям ЛПР (лица, принимающего решение), а столбцы В 1 , В 2 , … В n – стратегиям при­роды; а ij – выигрыш ЛПР, соответствующий каждой паре стратегий А i , В j .

Возможные стратегии b 1 b 2 b n
а 1 а 1 1 а 1 2 а 1 n
а m а m1 а m2 а mn

В рассматриваемой ситуации при выборе из множества { а 1 , а 2 ,..., а m } наилучшего решения обычно используют следующие критерии.

1. Критерий Вальда. Основывается на принципе пессимизма (наибольшей осторожности). При выборе решения надо рассчитывать на худший вариант действий со стороны природы. Рекомендуется применять максиминную стратегию. Она выбирается из условия

и совпадает с нижней ценой игры.

2. Критерий максимума. Он выбирается из условия

Критерий максимума является оптимистическим: считается, что природа будет наиболее благоприятна для человека.

где – степень оптимизма (показатель пессимизма-оптимизма) – изменяется в диапазоне .

Критерий Гурвица придерживается некоторой промежуточной позиции, учитывающей возможность как наихудшего, так и наилуч­шего поведения природы. При = 1 критерий превращается в кри­терий Вальда, при = 0 – в критерий максимума. На оказывает влияние степень ответственности лица, принимающего решение по выбору стратегии. Чем больше последствия ошибочных решений, больше желания застраховаться, тем ближе к единице.

4. Критерий Сэвиджа. Суть критерия состоит в выборе такой стра­тегии, чтобы не допустить чрезмерно высоких потерь, к которым она может привести. Находится матрица рисков , элементы которой по­казывают, какой убыток понесет человек (фирма), если для каждого состояния природы он не выберет наилучшей стратегии:

R =

Элементы матрицы рисков находятся по формуле

,

где – максимальный элемент в столбце исходной матрицы.

При принятии решений в условиях неопределенности следует оценивать различные варианты с точки зрения нескольких критериев. Если рекомендации совпадают, можно с большей уверенностью выбрать наилучшее решение; если рекомендации противоречат друг другу, окончательное решение надо принимать с учетом резуль­татов дополнительных исследований.

Пример. В приближении посевного сезона фермер имеет четыре аль­тернативы: А 1 – выращивать кукурузу, А 2 – пшеницу, А 3 – овощи или A 4 – использовать землю под пастбища. Платежи, связанные с указан­ными возможностями, зависят от количества осадков, которые условно можно разделить на четыре категории: B 1 – сильные осадки, В 2 – умерен­ные, В 3 – незначительные, B 4 – засушливый сезон.

Платежная матрица оценивается следующим образом:

Какое управленческое решение должен принять фермер?

Решение.

Следует использовать землю под пастбища.

2. Критерий максимума:

Max(80,90,150,35)=150.

Это соответствует стратегии А 3 – выращивать овощи.

2. Воспользуемся критерием Сэвиджа . Составим матрицу рисков, эле­менты которой находим по формуле

Оптимальная стратегия определяется выражением

В соответствии с этим критерием следует сеять пшеницу.

3. Воспользуемся критерием Гурвица . Оптимальная стратегия опреде­ляется по формуле

Предположим, что степень оптимизма Тогда

т.е. следует принять решение о выращивании овощей.

4. Правило максимизации среднего ожидаемого дохода. Если допустить, что известно распределение вероятностей для различных состояний природы, например эти состояния равновероятны (правило Лапласа равновозможности) то для принятия решения следует найти матема­тические ожидания выигрыша:

Так как максимальное значение имеет М 2 , то следует сеять пшеницу.

Вывод : два критерия одновременно рекомендуют выбор управленческой стратегии А 2 (сеять пшеницу), два критерия рекомендуют стратегию А 3 (выращивать овощи) .

Из таблицы видно, что оптимальное поведение во многом зависит от принятого критерия выбора наилучшего решения, поэтому выбор критерия является наименее простым и наиболее ответственным вопросом в теории игр.

Принятие решений в условиях частичной неопределенности (см. П.Н. Брусов, п. 3.9).

Оптимальная по Парето финансовая операция. Рассмотрим матрицу последствий , i=1,2,…,m, j=1,2,…,n. Альтернатива доминирует по Парето альтернативу , если , j=1,2,…,n, и, по крайней мере, для одного индекса j это неравенство строгое. Доминируемая альтернатива не может быть оптимальным решением, т.к. она по всем показателям не «лучше» доминирующей альтернативы. Альтернатива называется Парето-оптимальной (или оптимально по Парето ), если она не диминируется никакой другой альтернативой.

Все Парето-оптимальные решения образуют множество оптимальности по Парето .

Пример. Для матрицы последствий найти множество альтернатив, оптимальных по Парето.

0,4 0,9 0,5 0,5 0,6
0,6 0,5 0,7 0,8 0,9
0,6 0,3 0,8 0,6 0,7
0,3 0,8 0,5 0,4 0,3
0,1 0,3 0,5 0,4 0,3
0,4 0,8 0,5 0,4 0,5

В таблице – возможные альтернативы (стратегии) ЛПР, – одно из состояний неопределенной реальной ситуации.

Решение.

Стратегия доминирует над стратегиями , и . Следовательно, исключаем 4-ю, 5-ю и 6-ю строки матрицы.

Игроки
0,4 0,9 0,5 0,5 0,6
0,6 0,5 0,7 0,8 0,9
0,6 0,3 0,8 0,6 0,7

Больше доминируемых стратегий нет. Получаем множество оптимальности по Парето, состоящее из трех альтернатив: , , .

Выбор оптимальной стратегии в условиях риска и неопределенности предполагает рассмотрение различных критериев оптимальности, разработанный в рамках так называемой "игры с природой". Данная модель предполагает сознательную действие только одного участника - так называемого "игрока", которым в инвестиционном анализе есть инвестор, в пределах неподконтрольной его объективной реальности. При этом термином "природа" описывается совокупность объективных факторов, которые меняются независимо от желания игрока-инветостора, но имеют определяющее влияние на принятие им инвестиционных ришень.В инвестиционном анализе это - состояние инвестиционного рынка.

Инвестор имеет прогнозную оценку возможных вариантов комбинации этих факторов (состояний инвестиционного рынка (П.)), которые возникают случайно независимо от его действий. В некоторых случаях прогнозы могут содержать оценку вероятностей возникновения этих состояний (р), сумма которых для всех возможных вариантов развития инвестиционной ситуации равен 1.

Инвестор разрабатывает варианты возможных инвестиционных стратегий (А) и осуществляет оценку возможной доходности инвестиций для каждой стратегии и при каждом варианте состояния состояния инвестиционного рынка

На основе этой информации может быть сформирована так называемая матрица выигрышей (таблице. 11.1).

Таблица 11.1

Матрица выигрышей

Разница между максимальным выигрышем игрока при данном состоянии природы (тах (и])) и выигрышем определенной стратегии поведения игрока, которая может быть реализована при этом состоянии природы называется риском стратегии А. при состоянии природы П:

ту = тахС ^) _ аг]. (11.1)

Таким образом, риск является частью крупнейшего инвестиционного дохода при данном состоянии инвестиционного рынка, инвестор не получает в случае использования несовершенной инвестиционной стратегии.

Для рисков можно построить матрицу рисков, аналогичную по форме к матрице выигрышей.

Перед инвестором стоит задача выбора среди множества возможных инвестиционных стратегий оптимальной.

Для выбора оптимальной инвестиционной стратегии в ситуации неопределенности (когда не известны вероятности) используются следующие критерии:

Критерий максимакс - критерий крайнего оптимизма, согласно которому избирается инвестиционная стратегия, обеспечивающая максимальный выигрыш (доход) среди всех максимальных выигрышей, выделенных для каждого из возможных состояний инвестиционного рынка;

Критерий Вальда - так называемый "критерий пессимиста", согласно которому предполагается, что от любого решения следует ожидать худших последствий, а, следовательно, нужно найти такой вариант, при котором худший результат будет относительно лучше другие плохие результаты. То есть находится худший результат для каждого состояния инвестиционного рынка, а затем из них избирается инвестиционная стратегия с лучшим результатом среди них;

Критерий Сэвиджа - критерий минимаксного риска, аналогично критерию Вальда, но предусматривает анализ выбор по данным матрицы рисков;

Критерий Гурвица - максиминной-максимаксний критерий, по которому при выборе инвестиционной стратегии рекомендует выбирать альтернативу с максимальным средним результатом (при этом действует негласное предположение об одинаковой вероятность возникновения для всех возможных состояний инвестиционного рынка).

Для выбора оптимальной стратегии в условиях риска используются следующие критерии:

Критерий математического ожидания - предусматривает избрание инвестиционной стратегии, для которой средний взвешенный по вероятности выигрыш (математическое ожидание выигрыша, М) является максимальным:

мг = Хa, o Pj-> max; (11.2)

Критерий Лапласа - критерий максимизации взвешенного среднего показателя оптимальности стратегии, по которому при примерно одинаковой вероятности наступления событий оптимальной является стратегия, для которой суммарный выигрыш по всем возможным состояниями инвестиционной среды является максимальным. Именно этот критерий положен в основу сравнительной оценки эффективности проектов по критерию чистой текущей стоимости.

Окончательный выбор оптимальной инвестиционной стратегии осуществляется на основе обобщения результатов оценки по указанным выше критериям. При этом целесообразно принимать к реализации стратегии, которая является оптимальной по большинству критериев.

Выбор альтернатив в условиях неопределенности

Выбор наилучшего решения в условиях неопределœенности существенно зависит от того, какова ее степень, т.е какой информацией располагает ЛПР. Выбор альтернатив в условиях неопределœенности, когда вероятности их возможных вариантов неизвестны, но существуют принципы подхода к оценке результатов действий, обеспечивает использование различных критериев.

Учитывая зависимость отэтого последствия решений можно оценить через систему критериев, предусматривающих различную степень риска.

1. Максиминный критерий Вальда (критерий крайнего пессимизма) - «рассчитывай на худшее». В соответствии с ним, если требуется гарантия, чтобы выигрыш в любых условиях оказывался не меньше, чем наибольший из возможных в худших условиях, то оптимальным решением будет такое, для которого выигрыш окажется максимальным из всœех минимальных при различных вариантах условий.

Этот критерий ориентирует лицо, принимающее решение, на наихуд­шие условия и рекомендует выбрать ту стратегию, для которой выигрыш максимален. В других, более благоприятных условиях использование этого критерия приводит к потере эффективности системы или операции.

2. Минимаксный критерий Сэвиджа (минимизация большого риска) - «рассчи­тывай на лучшее». При его использовании обеспечивается наименьшее значение макси­мальной величины риска. Критерий Сэвиджа, как и критерий Вальда,- это критерий крайнего пессимизма, но пессимизм проявляется в том, что минимизируется максимальная потеря в выигрыше по сравнению с тем, чего можно было бы достичь в данных условиях.

3. Критерий Лапласа или Байеса - «ориентируйся на среднее».

Согласно этому критерию, если вероятность состояния среды неизвестна, варианты условий должны приниматься как равные. В этом случае выбирается альтернатива, характеризующаяся самой предполагаемой стоимостью при условии равных вероятностей. Критерий Лапласа позволяет условие неопределœенности сводить к условиям риска. Его называют критерием рациональности, он подходит для стратегических долгосрочных решений, как и описанные выше критерии.

4. Критерий крайнего оптимизма - «верь в удачу».

Максимаксный критерий предполагает, что состояние среды будет наиболее благо­получным, в связи с этим крайне важно выбрать решение, обеспечивающее мак­симальный выигрыш среди максимально возможных.

5 . Критерий пессимизма - оптимизма Гурвица - «компромисс».

Согласно этому критерию при выборе решения в условиях неопреде­ленности не руководствоваться ни крайним пессимизмом (всœегда рассчи­тывай на худшее), ни оптимизмом (всœе будет наилучшим образом). Реко­мендуется некое среднее решение. То есть крайне важно выбирать между двумя линиями поведения. Оптимальным решением будет такое, для которого окажется максимальным показатель G. Этот критерий имеет вид:

G = max [h min а0 + (1 - h )max aij ], (6)

где h - коэффициент, выбираемый экспертно из интервала между 0 и 1. Использование этого коэффициента вносит дополнительный субъ­ективизм в принятие решений.

6. Критерий математического ожидания предназначен для выбо­ра оптимальной стратегии поведения, ᴛ.ᴇ. для принятия серии решений:

7. Обобщенный критерий Гурвица.

Рассмотрим подробнее способы выбора решений в финансово-эконо­мической области в условиях риска, ᴛ.ᴇ. в условиях состояния окружающей среды. Математическая модель ситуаций такого типа принято называть игрой с внешней средой (природой). В игре принимают участие два игрока - лицо, принимающее решение и природа. При этом игрок действует осоз­нанно, стремясь выбрать наиболее удовлетворительное для себя решение, в то время как природа случайным образом проявляет свои состояния объективно, не противодействуя сознательно игроку, без учета возмож­ного выбора игроком своих стратегий и абсолютно безразлично к резуль­тату игры. Далее составляется матрица рисков.

Под ситуацией риска принято понимать, когда можно указать не только возможные последствия (выигрыш) каждой альтернативы, но и вероятности их появления. Основным критерием здесь является математическое ожидание. Остальные имеют подчинœенное значение.

В случае если ни одно из состояний «среды» нельзя назвать более вероятным, чем другие, ᴛ.ᴇ. если всœе они являются приблизительно равновероятными, то решение можно принимать с помощью критерия Лапласа. В этом случае оптимальным нужно считать то решение, которому соответствует наиболь­шая сумма выплат.

Когда два разных критерия предписывают принять одно и то же реше­ние, это считается дополнительным подтверждением его оптимальности. В случае если же они указывают на разные решения, то предпочтение в ситуации риска нужно отдать тому из них, на ĸᴏᴛᴏᴩᴏᴇ указывает критерий математи­ческого ожидания. Именно он является основным для данной ситуации.

Дополнительная информация может помочь сделать более удачный вы­бор. Возникает вопрос, какую предельно высокую цену за нее можно запла­тить, чтобы от этого была выгода. Теория решений для ответа на данный вопрос предлагает найти математическое ожидание выплаты, соответству­ющее идеальной информации, а затем сравнить его с математическим ожи­данием, ĸᴏᴛᴏᴩᴏᴇ можно получить при обычной информации. Разницу между ними и предлагается считать верхним пределом цены любой информации.

В проектах должны предусматриваться специфические механизмы

стабилизации, обеспечивающие защиту интересов участников при неблагоприятном изменении условий реализации проекта (даже если цели проекта достигнуты не полностью или вообще не достигнуты) и предотвращающие возможные действия участников, ставящие под угрозу его успешную реализацию. Возможно снижение степени риска или его перераспределœение между участниками.

1. ОБЩАЯ МЕТОДИКА ФОРМИРОВАНИЯ КРИТЕРИЕВ

Суть предлагаемой методики формирования критериев заключается в реализации следующих пунктов.

1) Из выигрышей аij, i=1,…,m; j=1,…,n, игрока А составляем матрицу А, предполагая, что она удовлетворяет указанным выше условиям: m³2, n³2 и она не содержит доминируемых (в частности, дублируемых) строк.

Выигрыши аij игрока А, представленные в виде матрицы А, дают возможность лучшего обозрения результатов выбора стратегий Аi, i=1,…,m, игроком А при каждом состоянии природы Пj, j=1,…,n.

2) Фиксируем распределение удовлетворяющих условию (1) вероятностей qj=p(Пj), j=1,…,n, состояний природы Пj, j=1,…n, разумеется, если они известны. Таким образом, пункт 2 участвует в методике формирования критерия в случае принятия решения в условиях риска.

3) На основании пунктов 1 и 2 выбираем натуральное число l, 1£l£n, и определенным образом строим матрицу


Назовем их коэффициентами формируемого критерия. Они призваны играть роль количественных оценок некоторых субъективных проявлений игрока А (лица, принимающего решение), а именно степени доверия к распределению вероятностей состояний природы и степени его пессимизма (оптимизма) при принятии решений.

5) Используя матрицу В и коэффициенты l1,…, ll, каждой стратегии Аi, i=1,…,m, игрока А поставим в соответствие число


7) Определим оптимальную стратегию.

Оптимальной стратегией назовем стратегию Аk с максимальным показателем эффективности, другими словами, - стратегию, показатель эффективности Gk которой совпадает с ценой игры G:


Понятно, что такое определение оптимальной стратегии не влечет ее единственности.

Отметим, что по логике этого пункта игрок А, выбирая оптимальную стратегию, максимизирует показатель Gi (см. (5)). Это обстоятельство оправдывает то, что этот показатель мы назвали (в пункте 5) показателем эффективности.

2. ФОРМИРОВАНИЕ НЕКОТОРЫХ ИЗВЕСТНЫХ КРИТЕРИЕВ-ЧАСТНЫЕ СЛУЧАИ ОБЩЕЙ МЕТОДИКИ

Критерий Байеса (, , , ).

1) Пусть А является матрицей выигрышей игрока А.

2) Известны вероятности qj=p(Пj), j=1,…,n, состояний природы Пj, j=1,…,n, удовлетворяющие условию (1). Следовательно, речь идет о принятии решения в условиях риска.

3) Полагаем l=n и матрицу В выбираем равной матрице А, т.е.

bij=aij для всех i=1,…,m и j=1,…,n.

4) Коэффициенты l1,…,ln, выбираем равными соответствующим вероятностям q1,…,qn, т.е. ll=qi, i=1,…,n. Этим самым игрок А выражает полное доверие к истинности распределения вероятностей q1,…,qn, состояний природы.

Из (1) следует, что коэффициенты lj, j=1,…,n удовлетворяют условию (3).

5) Показатель эффективности стратегии Аi по критерию Байеса обозначим через Вi и находим его по формуле (3):


Очевидно, что Вi – средневзвешенный выигрыш при стратегии Аi с весами q1,…,qn.

Если стратегию Аi трактовать как дискретную случайную величину, принимающую значения выигрышей при каждом состоянии природы, то вероятности этих выигрышей будут равны вероятностям состояний природы и тогда Вi есть математическое ожидание этой случайной величины (см. (6)).

6) Цена игры по критерию Байеса, обозначаемая нами через В, определяется по формуле (4):

7) Оптимальной среди чистых стратегий по критерию Байеса является стратегия Аk, для которой показатель эффективности максимален:

Критерий Лапласа (, , , ).

2) Исходя из теоретических, либо из практических соображений, констатируется, что ни одному из возможных состояний природы Пj, j=1,…,n, нельзя отдать предпочтения. Потому все состояния природы считают равновероятностными, т.е. qj=n-1, j=1,…,n. Этот принцип называют принципом «недостаточного основания» Лапласа. Вероятности qj=n-1, j=1,…,n, удовлетворяют условию (1).

Поскольку вероятности состояний природы известны: qj=n-1, j=1,…,n, то мы находимся в ситуации принятия решения в условиях риска.

3) Пусть l=n, а в качестве матрицы В можно взять матрицу, получающуюся из матрицы А, если каждую строку последней заменить на произвольную перестановку ее элементов. В частности, можем положить В=А. В общем же случае элементы матрицы В имеют вид bij=aikj(i), i=1,…, m; j=1,…,n, где aik1(i), aik2(i),…,aikn(i) – некоторая перестановка элементов ai1, ai2,…,ain i-й строки матрицы А.

4) Пусть коэффициенты lj=n-1, j=1,…,n. Очевидно, они удовлетворяют условию (2).

Выбор коэффициентов lj, j=1,…,n, таким образом подтверждает полное доверие игрока А к принципу недостаточного основания Лапласа.

5) По формуле (3) показатель эффективности стратегии Аi по критерию Лапласа, обозначаемый нами через Li, равен:


7) Оптимальной стратегией Аk по критерию Лапласа является стратегия с максимальным показателем эффективности:

Заметим, что, как следует из (7) и (8), показатель эффективности Li будет максимальным тогда и только тогда, когда максимальной будет сумма , и потому в качестве показателя эффективности стратегии Аi можно рассмотреть число , а в качестве цены игры – число .

Тогда оптимальной будет стратегия, сумма выигрышей при которой максимальна.

Критерий Вальда ( – ).

1) Предположим, что А – матрица выигрышей игрока А.

2) Вероятности состояний природы неизвестны и нет возможности получить о них какую-либо статистическую информацию. Поэтому игрок А находится в ситуации принятия решения в условиях неопределенности.

3) Пусть l=1 и


4) Пусть коэффициент l1=1. Очевидно, условие (2) выполняется.

5) Обозначим показатель эффективности стратегии Аi по критерию Вальда через Wi. В силу (9) и значения коэффициента l1=1, по формуле (3) имеем:


Таким образом, показатель эффективности стратегии Аi по критерию Вальда есть минимальный выигрыш игрока А при применении им этой стратегии.

6) Цена игры по критерию Вальда, обозначим ее через W, находится по формуле (4):

7) Оптимальной среди чистых стратегий по критерию Вальда является стратегия Аk с максимальным показателем эффективности:

Другими словами, оптимальной среди чистых стратегий по критерию Вальда считается та чистая стратегия, при которой минимальный выигрыш является максимальным среди минимальных выигрышей всех чистых стратегий. Таким образом, оптимальная стратегия по критерию Вальда гарантирует при любых состояниях природы выигрыш, не меньший максимина:


В силу (10), критерий Вальда является критерием крайнего пессимизма игрока А, а количественным выражением этого крайнего пессимизма является значение коэффициента l1, равное 1. Игрок А, принимая решение, действует по принципу наибольшей осторожности.

Хотя арабская пословица и гласит: «Кто боится собственной тени, тому нет места под солнцем», - тем не менее этот критерий уместен в тех случаях, когда игрок А не столько хочет выиграть, сколько не хочет проиграть. Использование принципа Вальда в обиходе подтверждается такими поговорками как «Семь раз отмерь – один раз отрежь», «Береженого Бог бережет», «Лучше синица в руках, чем журавль в небе».

Критерий Ходжа-Лемана .

1) Предположим, что матрицей выигрышей игрока А является матрица А.

2) Известны вероятности qi=p(Пj), j=1,…,n, состояний природы Пj, j=1,…,n, удовлетворяющие условию (1).

Таким образом, игроку А надлежит принимать решение в условиях риска.

3) Пусть l=2,


· показатель эффективности стратегии Аi по критерию Байеса.

Матрица В примет вид


Очевидно, что эти коэффициенты удовлетворяют условию (2).

5) По формуле (3), с учетом (11), (12), и (13), показатель эффективности стратегии Аi по критерию Ходжа-Лемана равен:

Gi=libi1+l2bi2=(1-l)Wi+lBi=(1-l)aij+ i=1,…,m.

В правой части формулы (14) коэффициент lÎ есть количественный показатель степени доверия игрока А данному распределению вероятностей qi=p(Пj), j=1,…,n, состояний природы Пj, j=1,…,n, а коэффициент (1-l) характеризует количественно степень пессимизма игрока А. Чем больше доверия игрока А данному распределению вероятностей состояний природы, тем меньше пессимизма и наоборот.

6) Цену игры по критерию Ходжа-Лемана находим по формуле (4):

7) Оптимальной стратегией по критерию Ходжа-Лемана является стратегия Аk с наибольшим показателем эффективности:

Отметим, что критерий Ходжа-Лемана является как-бы промежуточным критерием между критериями Байеса и Вальда. При l=1, из (14) имеем:Gi=Bi и потому критерий Ходжа-Лемана превращается в критерий Байеса. А при l=0, из (14): Gi=Wi и, следовательно, из критерия Ходжа-Лемана получаем критерий Вальда.

Критерий Гермейера .

1) Пусть матрица А является матрицей выигрышей игрока А.

2) Даны вероятности qi=p(Пj), j=1,…,n, состояний природы Пj, j=1,…,n, удовлетворяющие условию (1).

Т.о. игрок А находится в ситуации принятия решений в условиях риска

размера m x 1.

4) Полагаем l1=1. Условие (2), очевидно, выполняется.

5) Показатель эффективности стратегии Аi по критерию Гермейера определяем по формуле (3) с учетом (15) и того, что l1=1:


Если игрок А придерживается стратегии Аi, то вероятность выигрыша aij при этой стратегии и при состоянии природы Пj равна, очевидно, вероятности qj этого состояния природы. Поэтому формула (16) показывает, что показатель эффективности стратегии Аi по критерию Гермейера есть минимальный выигрыш при этой стратегии с учетом его вероятности.

6) Цена игры по критерию Гермейера определяется по формуле (4):

7) Оптимальной стратегией по критерию Гермейера считается стратегия Аk с наибольшим показателем эффективности:

Заметим, что критерий Гермейера можно интерпретировать как критерий Вальда, применимый к игре с матрицей


Критерий Гермейера так же, как и критерий Вальда является критерием крайнего пессимизма игрока А, но, в отличие от критерия Вальда, игрок А, принимая решение с максимальной осмотрительностью, учитывает вероятности состояний природы.

В случае равномерного распределения вероятностей состояний природы: qj=n-1, j=1,…,n, показатель эффективности стратегии Аi, в силу формулы (16), будет равен Gi=n-1aij и, следовательно, критерий Гермейера эквивалентен критерию Вальда, т.е. стратегия, оптимальная по критерию Гермейера, оптимальна и по критерию Вальда, и наоборот.

Критерий произведений .

1) Пусть матрицей выигрышей игрока А является матрица А, все элементы которой положительны:

aij>0, i=1,…,m; j=1,…,n.

2) Известны вероятности qj=p(Пj), j=1,…,n, состояний природы Пj, j=1,…,n, и удовлетворяют условию (1).

3) Пусть l=1 и


размера m x 1.

4) Пусть l1=1. Условие (2) выполняется.

5) Показатель эффективности стратегии Аi по критерию произведений в соответствии с формулами (3) и (17) равен

.

6) Цена игры по критерию произведений вычисляется по формуле (4):

7) Оптимальной стратегией по критерию произведений является стратегия Аk с наибольшим показателем эффективности:

Отметим, что для критерия произведений является существенным положительность всех состояний вероятностей состояний природы и всех выигрышей игрока А.

Максимаксный критерий (.-).

2) Вероятность состояний неизвестны. Решение принимается в условиях неопределенности.

3) Пусть l=1 и


размера m x 1.

4) Коэффициент l1 выбираем равным 1: l1=1. При этом условие (2), очевидно, выполняется.

5) Показатель эффективности стратегии Аi по максимаксному критерию обозначим через Мi и определим его по формуле (3) с учетом (18) и того, чтоl1=1:


Таким образом, показатель эффективности стратегии Аi по максимаксному критерию есть наибольший выигрыш при этой стратегии.

6) Цена игры по максимаксному критерию, обозначаемая нами через М, определяется по формуле (4):


Очевидно, что это есть наибольший элемент матрицы А.

7) Оптимальная стратегия по максимаксному критерию есть стратегия Аk с наибольшим показателем эффективности:

Из формулы (19) заключаем, что максимаксный критерий является критерием крайнего оптимизма игрока А. Количественно это выражается тем, что l1=1. Этот критерий противоположен критерию Вальда. Игрок А, пользуясь максимаксным критерием, предполагает, что природа П будет находиться в благоприятнейшем для него состоянии, и, как следствие отсюда, ведет себя весьма легкомысленно, с «шапкозакидательским» настроением, поскольку уверен в наибольшем выигрыше. Вместе с тем, в некоторых случаях этим критерием пользуются осознанно, например, когда перед игроком А стоит дилемма: либо получить наибольший выигрыш, либо стать банкротом. Бытовое отражение подобных ситуаций иллюстрируется поговорками: «Пан или пропал», «Кто не рискует, тот не выигрывает» и т.п.

Оптимальная стратегия по максимальному критерию гарантирует игроку А возможность выигрыша, равного максимаксу.

.

Критерий пессимизма-оптимизма Гурвица с показателем оптимизма lÎ ( – ).

1) Пусть А – матрица выигрышей игрока А.

2) Вероятности состояний природы неизвестны и нет возможности получить о них какую–либо надежную статистическую информацию.

Таким образом, решение о выборе оптимальной стратегии будет приниматься в условиях неопределенности.

3) Положим l=2. Элементы матрицы В


4) Коэффициенты l1 и l2 выбираем следующим образом:


В формуле (22) l - показатель оптимизма, а (1-l) – показатель пессимизма игрока А при выборе им оптимальной стратегии. Чем ближе к единице показатель оптимизма, тем ближе к нулю показатель пессимизма, и тем больше оптимизма и меньше пессимизма. И наоборот. Если l=0,5, то и 1-l=0,5, т.е. показатели оптимизма и пессимизма одинаковы. Это означает, что игрок А при выборе стратегии ведет себя нейтрально.

Таким образом, число l выбирается в пределах от 0 до 1 в зависимости от склонности игрока А к оптимизму или пессимизму.

6) Цена игры по критерию Гурвица Н определяется из формулы (5):


7) Оптимальная стратегия Аk по критерию Гурвица соответствует показателю эффективности

Критерий Гурвица является промежуточным между критерием Вальда и максимаксным критерием и превращается в критерий Вальда при l=0 и - в максимаксный критерий при l=1.

Обобщенный критерий Гурвица с коэффициентами l1,…, ln (, ).

1) Пусть А – матрица выигрышей игрока А.

2) Вероятности состояний природы неизвестны. Так что решение принимается в условиях неопределенности.

3) Матрица В получается из матрицы А перестановкой элементов каждой ее строки в неубывающем порядке:

bi1£bi2£…£bin, i=1,…,m.

Таким образом, в 1-м столбце матрицы В стоят минимальные, а в n-м столбце максимальные выигрыши стратегий. Другими словами, в 1-м столбце матрицы В стоят показатели эффективности стратегий по критерию Вальда, а в n-м столбце – показатели эффективности стратегий по максимаксному критерию.

4) Коэффициенты l1,…, ln выбираются удовлетворяющими условиям (2) соответственно различной степени склонности игрока А к оптимизму. При этом показателем пессимизма игрока А называется число


где целая часть числа , а показателем оптимизма игрока А называется число


Очевидно, что lр+l0=1.

5) Показатель эффективности стратегии Аi по обобщенному критерию Гурвица определяется по формуле (3):


6) Цену игры по обобщенному критерию Гурвица определим по формуле (4):

7) Оптимальные стратегии находятся стандартно: Аk – оптимальная стратегия, если Gk=G.

Отметим, что обобщенный критерий Гурвица учитывает все выигрыши при каждой стратегии, что необходимо для более полной картины эффективности стратегий. Отметим также, что некоторые из приведенных выше критериев являются частными случаями обобщенного критерия Гурвица.

Отметим, что если В=А, то коэффициенты lj, j=1,…,n, можно формально интерпретировать как вероятности состояний природы и в, таком случае, обобщенный критерий Гурвица совпадает с критерием Байеса.

Если lj=n-1, j=1,…,n, то обобщенный критерий Гурвица превращается в критерий Лапласа.

Если l1=1, l2=…=ln=0, то обобщенный критерий Гурвица представляет собой критерий Вальда.

При l1=…=ln-1=0, ln=1, из обобщенного критерия Гурвица получаем максимаксный критерий.

Если l1=1-l, l2=…=ln-1=0, ln=l, где lÎ, то обобщенный критерий Гурвица является критерием Гурвица.

Если В=А и qi=p(Пj), j=1,…,n – вероятности состояний природы, удовлетворяющие условиям (1), то выбрав коэффициенты lj, j=1,…,n, следующим образом: l1=1-l+lq1, lj=lqj, j=2,…,n, где lÎ, мы из обобщенного критерия Гурвица получим критерий Ходжа Лемана.

3. ЗАДАЧА В УСЛОВИЯХ ПОЛНОЙ НЕОПРЕДЕЛЁННОСТИ

Допустим, инвестор принимает решение о строительстве жилья определенного типа в некотором месте. Инвестор действует в условиях неопределенности (информационной непрозрачности) на рынке жилья. Чтобы сформировать представление о ситуации на рынке жилья на момент завершения строительства ему необходимо учесть цены на недвижимость, конкуренцию на рынке жилья, соотношение предложения и спроса, курсы валют и многое другое. Статистические данные свидетельствуют о том, что одной из главных составляющих стоимости жилья является место его расположения.

Рассмотрим математическую модель данной ситуации. Мы имеем игру с природой, где игрок А – инвестор, природа П – совокупность возможных ситуаций на рынке жилья на момент завершения строительства, из которых можно сформировать, например, пять состояний П1, П2, П3, П4, П5 природы. Известны приближенные вероятности этих состояний q1=p(П1)»0,30; q2=p(П2)»0,20; q3=p(П3)»0,15; q4=p(П4)»0,10; q5=p(П5)»0,25. Предположим, что игрок А располагает четырьмя (чистыми) стратегиями А1, А2, А3, А4, представляющими собой выбор определенного места для постройки жилья. Множество этих мест ограничено градостроительными решениями, стоимостью земли и т.д. Инвестиционная привлекательность проекта определяется как процент прироста дохода по отношению к сумме капитальных вложений, оценка которых известна при каждой стратегии и каждом состоянии природы. Эти данные представлены в следующей матрице выигрышей игрока А:


размера 4 х 5, в последней, дополнительной строке которой указаны вероятности состояний природы. Матрица (24) не содержит доминируемых (в частности, дублируемых) строк и все ее элементы положительны.

Инвестору предстоит выбрать участок земли так, чтобы наиболее эффективно использовать капиталовложения.

Подсчитаем показатели эффективности стратегий

· по критериям Байеса, Гермейера и критерию произведений при условии, что инвестор А доверяет данному распределению вероятностей состояний природы,

· по критерию Лапласа, если инвестор А не доверяет данному распределению вероятностей состояний природы и не может отдать предпочтения ни одному из рассматриваемых состояний природы,

· по критерию Ходжа- Лемана с коэффициентом доверия к вероятностям состояний природы, например, l=0,4,

· по критерию Вальда, максимаксному критерию, критерию пессимизма-оптимизма Гурвица с показателем оптимизма, например, l=0,6, и по обобщенному критерию Гурвица с коэффициентами, например, l1=0,35; l2=0,24; l3=0,19; l4=0,13; l5=0,09.

Результаты подсчета показателей эффективности и оптимальные стратегии представлены в следующей таблице:

Таблица показателей эффективности и оптимальных стратегий

Стратегии

Критерии

Ходжа-Лемана

Гермейгера

Произ-ведений

Макси-максный

Обобщенный Гурвица с коэффиц

l1=0,35
l2=0,24
l3=0,19
l4=0,13
l5=0,09

Оптимал. стратегии


Заметим, что, поскольку, в критерии Ходжа- Лемана показатель доверия игрока А распределению вероятностей состояний, указанных в последней строке матрицы (24), равен l=0,4, то показатель пессимизма игрока А равен 1-l=0,6.

В критерии Гурвица показатель оптимизма игрока А равен l=0,4 и, следовательно, показатель его пессимизма также равен 1-l=0,6.

В обобщенном критерии Гурвица по формуле (23) показатель пессимизма

= 0,35+0,24+0,5×0,19=0,685

и, следовательно, показатель оптимизма l0=1-0,685=0,315.

Таким образом, во всех примененных критериях, учитывающих индивидуальные проявления игрока А к пессимизму и оптимизму, игрок А более склонен к пессимистической оценке ситуации, чем к оптимистической, примерно с одинаковыми показателями.

В результате применения девяти критериев мы видим, что в качестве оптимальной стратегии А1 выступает 3 раза, стратегия А3 – 6 раз и стратегия А4 – 1 раз. Поэтому, если у инвестора А нет никаких обоснованных серьезных возражений, то в качестве оптимальной можно рассматривать стратегию А3.