22 метод наименьших квадратов состоит. Линейная регрессия

3. Аппроксимация функций с помощью метода

наименьших квадратов

Метод наименьших квадратов применяется при обработке результатов эксперимента для аппроксимации (приближения) экспериментальных данных аналитической формулой. Конкретный вид формулы выбирается, как правило, из физических соображений. Такими формулами могут быть:

и другие.

Сущность метода наименьших квадратов состоит в следующем. Пусть результаты измерений представлены таблицей:

Таблица 4

x n

y n

(3.1)

где f - известная функция, a 0 , a 1 , …, a m - неизвестные постоянные параметры, значения которых надо найти. В методе наименьших квадратов приближение функции (3.1) к экспериментальной зависимости считается наилучшим, если выполняется условие

(3.2)

то есть сумм a квадратов отклонений искомой аналитической функции от экспериментальной зависимости должна быть минимальна .

Заметим, что функция Q называется невязкой.


Так как невязка

то она имеет минимум. Необходимым условием минимума функции нескольких переменных является равенство нулю всех частных производных этой функции по параметрам. Таким образом, отыскание наилучших значений параметров аппроксимирующей функции (3.1), то есть таких их значений, при которых Q = Q (a 0 , a 1 , …, a m ) минимальна, сводится к решению системы уравнений:

(3.3)

Методу наименьших квадратов можно дать следующее геометрическое истолкование: среди бесконечного семейства линий данного вида отыскивается одна линия, для которой сумма квадратов разностей ординат экспериментальных точек и соответствующих им ординат точек, найденных по уравнению этой линии, будет наименьшей.

Нахождение параметров линейной функции

Пусть экспериментальные данные надо представить линейной функцией:

Требуется подобрать такие значения a и b , для которых функция

(3.4)

будет минимальной. Необходимые условия минимума функции (3.4) сводятся к системе уравнений:

После преобразований получаем систему двух линейных уравнений с двумя неизвестными:

(3.5)

решая которую , находим искомые значения параметров a и b .

Нахождение параметров квадратичной функции

Если аппроксимирующей функцией является квадратичная зависимость

то её параметры a , b , c находят из условия минимума функции:

(3.6)

Условия минимума функции (3.6) сводятся к системе уравнений:


После преобразований получаем систему трёх линейных уравнений с тремя неизвестными:

(3.7)

при решении которой находим искомые значения параметров a , b и c .

Пример . Пусть в результате эксперимента получена следующая таблица значений x и y :

Таблица 5

y i

0,705

0,495

0,426

0,357

0,368

0,406

0,549

0,768

Требуется аппроксимировать экспериментальные данные линейной и квадратичной функциями.

Решение. Отыскание параметров аппроксимирующих функций сводится к решению систем линейных уравнений (3.5) и (3.7). Для решения задачи воспользуемся процессором электронных таблиц Excel .

1. Сначала сцепим листы 1 и 2. Занесём экспериментальные значения x i и y i в столбцы А и В, начиная со второй строки (в первой строке поместим заголовки столбцов). Затем для этих столбцов вычислим суммы и поместим их в десятой строке.

В столбцах C – G разместим соответственно вычисление и суммирование

2. Расцепим листы.Дальнейшие вычисления проведём аналогичным образом для линейной зависимости на Листе 1и для квадратичной зависимости на Листе 2.

3. Под полученной таблицей сформируем матрицу коэффициентов и вектор-столбец свободных членов. Решим систему линейных уравнений по следующему алгоритму:

Для вычисления обратной матрицы и перемножения матриц воспользуемся Мастером функций и функциями МОБР и МУМНОЖ .

4. В блоке ячеек H2: H 9 на основе полученных коэффициентов вычислим значенияаппроксимирующего полинома y i выч ., в блоке I 2: I 9 – отклонения D y i = y i эксп . - y i выч .,в столбце J – невязку:

Полученные таблицы и построенные с помощью Мастера диаграмм графики приведёны на рисунках6, 7, 8.


Рис. 6. Таблица вычисления коэффициентов линейной функции,

аппроксимирующей экспериментальные данные.


Рис. 7. Таблица вычисления коэффициентов квадратичной функции,

аппроксимирующей экспериментальные данные.


Рис. 8. Графическое представление результатов аппроксимации

экспериментальных данных линейной и квадратичной функциями.

Ответ. Аппроксимировали экспериментальные данные линейной зависимостью y = 0,07881 x + 0,442262 c невязкой Q = 0,165167 и квадратичной зависимостью y = 3,115476 x 2 – 5,2175 x + 2,529631 c невязкой Q = 0,002103 .

Задания. Аппроксимировать функцию, заданную таблично, линейной и квадратичной функциями.

Таблица 6

№0

x

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

y

3,030

3,142

3,358

3,463

3,772

3,251

3,170

3,665

1

3,314

3,278

3,262

3,292

3,332

3,397

3,487

3,563

2

1,045

1,162

1,264

1,172

1,070

0,898

0,656

0,344

3

6,715

6,735

6,750

6,741

6,645

6,639

6,647

6,612

4

2,325

2,515

2,638

2,700

2,696

2,626

2,491

2,291

5

1.752

1,762

1,777

1,797

1,821

1,850

1,884

1,944

6

1,924

1,710

1,525

1,370

1,264

1,190

1,148

1,127

7

1,025

1,144

1,336

1,419

1,479

1,530

1,568

1,248

8

5,785

5,685

5,605

5,545

5,505

5,480

5,495

5,510

9

4,052

4,092

4,152

4,234

4,338

4,468

4,599

Приблизим функцию многочленом 2-ой степени. Для этого вычислим коэффициенты нормальной системы уравнений:

, ,

Составим нормальную систему наименьших квадратов, которая имеет вид:

Решение системы легко находится:, , .

Таким образом, многочлен 2-ой степени найден: .

Теоретическая справка

Вернуться на страницу <Введение в вычислительную математику. Примеры>

Пример 2 . Нахождение оптимальной степени многочлена.

Вернуться на страницу <Введение в вычислительную математику. Примеры>

Пример 3 . Вывод нормальной системы уравнений для нахождения параметров эмпирической зависимости.

Выведем систему уравнений для определения коэффициентов и функции , осуществляющей среднеквадратичную аппроксимацию заданной функции по точкам. Составим функцию и запишем для нее необходимое условие экстремума:

Тогда нормальная система примет вид:

Получили линейную систему уравнений относительно неизвестных параметров и, которая легко решается.

Теоретическая справка

Вернуться на страницу <Введение в вычислительную математику. Примеры>

Пример.

Экспериментальные данные о значениях переменных х и у приведены в таблице.

В результате их выравнивания получена функция

Используя метод наименьших квадратов , аппроксимировать эти данные линейной зависимостью y=ax+b (найти параметры а и b ). Выяснить, какая из двух линий лучше (в смысле метода наименьших квадратов) выравнивает экспериментальные данные. Сделать чертеж.

Суть метода наименьших квадратов (МНК).

Задача заключается в нахождении коэффициентов линейной зависимости, при которых функция двух переменных а и b принимает наименьшее значение. То есть, при данных а и b сумма квадратов отклонений экспериментальных данных от найденной прямой будет наименьшей. В этом вся суть метода наименьших квадратов.

Таким образом, решение примера сводится к нахождению экстремума функции двух переменных.

Вывод формул для нахождения коэффициентов.

Составляется и решается система из двух уравнений с двумя неизвестными. Находим частные производные функции по переменным а и b , приравниваем эти производные к нулю.

Решаем полученную систему уравнений любым методом (например методом подстановки или методом Крамера) и получаем формулы для нахождения коэффициентов по методу наименьших квадратов (МНК).

При данных а и b функция принимает наименьшее значение. Доказательство этого факта приведено ниже по тексту в конце страницы.

Вот и весь метод наименьших квадратов. Формула для нахождения параметра a содержит суммы , , , и параметр n — количество экспериментальных данных. Значения этих сумм рекомендуем вычислять отдельно.

Коэффициент b находится после вычисления a .

Пришло время вспомнить про исходый пример.

Решение.

В нашем примере n=5 . Заполняем таблицу для удобства вычисления сумм, которые входят в формулы искомых коэффициентов.

Значения в четвертой строке таблицы получены умножением значений 2-ой строки на значения 3-ей строки для каждого номера i .

Значения в пятой строке таблицы получены возведением в квадрат значений 2-ой строки для каждого номера i .

Значения последнего столбца таблицы – это суммы значений по строкам.

Используем формулы метода наименьших квадратов для нахождения коэффициентов а и b . Подставляем в них соответствующие значения из последнего столбца таблицы:

Следовательно, y = 0.165x+2.184 — искомая аппроксимирующая прямая.

Осталось выяснить какая из линий y = 0.165x+2.184 или лучше аппроксимирует исходные данные, то есть произвести оценку методом наименьших квадратов.

Оценка погрешности метода наименьших квадратов.

Для этого требуется вычислить суммы квадратов отклонений исходных данных от этих линий и , меньшее значение соответствует линии, которая лучше в смысле метода наименьших квадратов аппроксимирует исходные данные.

Так как , то прямая y = 0.165x+2.184 лучше приближает исходные данные.

Графическая иллюстрация метода наименьших квадратов (мнк).

На графиках все прекрасно видно. Красная линия – это найденная прямая y = 0.165x+2.184 , синяя линия – это , розовые точки – это исходные данные.

Для чего это нужно, к чему все эти аппроксимации?

Я лично использую для решения задач сглаживания данных, задач интерполяции и экстраполяции (в исходном примере могли бы попросить найти занчение наблюдаемой величины y при x=3 или при x=6 по методу МНК). Но подробнее поговорим об этом позже в другом разделе сайта.

К началу страницы

Доказательство.

Чтобы при найденных а и b функция принимала наименьшее значение, необходимо чтобы в этой точке матрица квадратичной формы дифференциала второго порядка для функции была положительно определенной. Покажем это.

Дифференциал второго порядка имеет вид:

То есть

Следовательно, матрица квадратичной формы имеет вид

причем значения элементов не зависят от а и b .

Покажем, что матрица положительно определенная. Для этого нужно, чтобы угловые миноры были положительными.

Угловой минор первого порядка . Неравенство строгое, так как точки несовпадающие. В дальнейшем это будем подразумевать.

Угловой минор второго порядка

Докажем, что методом математической индукции.

Вывод : найденные значения а и b соответствуют наименьшему значению функции , следовательно, являются искомыми параметрами для метода наименьших квадратов.

Некогда разбираться?
Закажите решение

К началу страницы

Разработка прогноза с помощью метода наименьших квадратов. Пример решения задачи

Экстраполяция — это метод научного исследования, который основан на распространении прошлых и настоящих тенденций, закономерностей, связей на будущее развитие объекта прогнозирования. К методам экстраполяции относятся метод скользящей средней, метод экспоненциального сглаживания, метод наименьших квадратов.

Сущность метода наименьших квадратов состоит в минимизации суммы квадратических отклонений между наблюдаемыми и расчетными величинами. Расчетные величины находятся по подобранному уравнению – уравнению регрессии. Чем меньше расстояние между фактическими значениями и расчетными, тем более точен прогноз, построенный на основе уравнения регрессии.

Теоретический анализ сущности изучаемого явления, изменение которого отображается временным рядом, служит основой для выбора кривой. Иногда принимаются во внимание соображения о характере роста уровней ряда. Так, если рост выпуска продукции ожидается в арифметической прогрессии, то сглаживание производится по прямой. Если же оказывается, что рост идет в геометрической прогрессии, то сглаживание надо производить по показательной функции.

Рабочая формула метода наименьших квадратов : У t+1 = а*Х + b , где t + 1 – прогнозный период; Уt+1 – прогнозируемый показатель; a и b — коэффициенты; Х — условное обозначение времени.

Расчет коэффициентов a и b осуществляется по следующим формулам:

где, Уф – фактические значения ряда динамики; n – число уровней временного ряда;

Сглаживание временных рядов методом наименьших квадратов служит для отражения закономерности развития изучаемого явления. В аналитическом выражении тренда время рассматривается как независимая переменная, а уровни ряда выступают как функция этой независимой переменной.

Развитие явления зависит не от того, сколько лет прошло с отправного момента, а от того, какие факторы влияли на его развитие, в каком направлении и с какой интенсивностью. Отсюда ясно, что развитие явления во времени выступает как результат действия этих факторов.

Правильно установить тип кривой, тип аналитической зависимости от времени – одна из самых сложных задач предпрогнозного анализа .

Подбор вида функции, описывающей тренд, параметры которой определяются методом наименьших квадратов, производится в большинстве случаев эмпирически, путем построения ряда функций и сравнения их между собой по величине среднеквадратической ошибки, вычисляемой по формуле:

где Уф – фактические значения ряда динамики; Ур – расчетные (сглаженные) значения ряда динамики; n – число уровней временного ряда; р – число параметров, определяемых в формулах, описывающих тренд (тенденцию развития).

Недостатки метода наименьших квадратов :

  • при попытке описать изучаемое экономическое явление с помощью математического уравнения, прогноз будет точен для небольшого периода времени и уравнение регрессии следует пересчитывать по мере поступления новой информации;
  • сложность подбора уравнения регрессии, которая разрешима при использовании типовых компьютерных программ.

Пример применения метода наименьших квадратов для разработки прогноза

Задача . Имеются данные, характеризующие уровень безработицы в регионе, %

  • Постройте прогноз уровня безработицы в регионе на ноябрь, декабрь, январь месяцы, используя методы: скользящей средней, экспоненциального сглаживания, наименьших квадратов.
  • Рассчитайте ошибки полученных прогнозов при использовании каждого метода.
  • Сравните полученные результаты, сделайте выводы.

Решение методом наименьших квадратов

Для решения составим таблицу, в которой будем производить необходимые расчеты:

ε = 28,63/10 = 2,86% точность прогноза высокая.

Вывод : Сравнивая результаты, полученные при расчетах методом скользящей средней , методом экспоненциального сглаживания и методом наименьших квадратов, можно сказать, что средняя относительная ошибка при расчетах методом экспоненциального сглаживания попадает в пределы 20-50%. Это значит, что точность прогноза в данном случае является лишь удовлетворительной.

В первом и третьем случае точность прогноза является высокой, поскольку средняя относительная ошибка менее 10%. Но метод скользящих средних позволил получить более достоверные результаты (прогноз на ноябрь – 1,52%, прогноз на декабрь – 1,53%, прогноз на январь – 1,49%), так как средняя относительная ошибка при использовании этого метода наименьшая – 1,13%.

Метод наименьших квадратов

Другие статьи по данной теме:

Список использованных источников

  1. Научно-методические рекомендации по вопросам диагностики социальных рисков и прогнозирования вызовов, угроз и социальных последствий. Российский государственный социальный университет. Москва. 2010;
  2. Владимирова Л.П. Прогнозирование и планирование в условиях рынка: Учеб. пособие. М.: Издательский Дом «Дашков и Ко», 2001;
  3. Новикова Н.В., Поздеева О.Г. Прогнозирование национальной экономики: Учебно-методическое пособие. Екатеринбург: Изд-во Урал. гос. экон. ун-та, 2007;
  4. Слуцкин Л.Н. Курс МБА по прогнозированию в бизнесе. М.: Альпина Бизнес Букс, 2006.

Программа МНК

Введите данные

Данные и аппроксимация y = a + b·x

i - номер экспериментальной точки;
x i - значение фиксированного параметра в точке i ;
y i - значение измеряемого параметра в точке i ;
ω i - вес измерения в точке i ;
y i, расч. - разница между измеренным и вычисленным по регрессии значением y в точке i ;
S x i (x i) - оценка погрешности x i при измерении y в точке i .

Данные и аппроксимация y = k·x

i x i y i ω i y i, расч. Δy i S x i (x i)

Кликните по графику,

Инструкция пользователя онлайн-программы МНК.

В поле данных введите на каждой отдельной строке значения `x` и `y` в одной экспериментальной точке. Значения должны отделяться пробельным символом (пробелом или знаком табуляции).

Третьим значением может быть вес точки `w`. Если вес точки не указан, то он приравнивается единице. В подавляющем большинстве случаев веса экспериментальных точек неизвестны или не вычисляются, т.е. все экспериментальные данные считаются равнозначными. Иногда веса в исследуемом интервале значений совершенно точно не равнозначны и даже могут быть вычислены теоретически. Например, в спектрофотометрии веса можно вычислить по простым формулам, правда в основном этим все пренебрегают для уменьшения трудозатрат.

Данные можно вставить через буфер обмена из электронной таблицы офисных пакетов, например Excel из Майкрософт Офиса или Calc из Оупен Офиса. Для этого в электронной таблице выделите диапазон копируемых данных, скопируйте в буфер обмена и вставьте данные в поле данных на этой странице.

Для расчета по методу наименьших квадратов необходимо не менее двух точек для определения двух коэффициентов `b` - тангенса угла наклона прямой и `a` - значения, отсекаемого прямой на оси `y`.

Для оценки погрешности расчитываемых коэффициентов регресии нужно задать количество экспериментальных точек больше двух.

Метод наименьших квадратов (МНК).

Чем больше количество экспериментальных точек, тем более точна статистическая оценка коэффицинетов (за счет снижения коэффицинета Стьюдента) и тем более близка оценка к оценке генеральной выборки.

Получение значений в каждой экспериментальной точке часто сопряжено со значительными трудозатратами, поэтому часто проводят компромиссное число экспериментов, которые дает удобоваримую оценку и не привеодит к чрезмерным трудо затратам. Как правило число экспериментах точек для линейной МНК зависимости с двумя коэффицинетами выбирает в районе 5-7 точек.

Краткая теория метода наименьших квадратов для линейной зависимости

Допустим у нас имеется набор экспериментальных данных в виде пар значений [`y_i`, `x_i`], где `i` - номер одного эксперементального измерения от 1 до `n`; `y_i` - значение измеренной величины в точке `i`; `x_i` - значение задаваемого нами параметра в точке `i`.

В качестве примера можно рассмотреть действие закона Ома. Изменяя напряжение (разность потенциалов) между участками электрической цепи, мы замеряем величину тока, проходящего по этому участку. Физика нам дает зависимость, найденную экспериментально:

`I = U / R`,
где `I` - сила тока; `R` - сопротивление; `U` - напряжение.

В этом случае `y_i` у нас имеряемая величина тока, а `x_i` - значение напряжения.

В качестве другого примера рассмотрим поглощение света раствором вещества в растворе. Химия дает нам формулу:

`A = ε l C`,
где `A` - оптическая плотность раствора; `ε` - коэффициент пропускания растворенного вещества; `l` - длина пути при прохождении света через кювету с раствором; `C` - концентрация растворенного вещества.

В этом случае `y_i` у нас имеряемая величина отптической плотности `A`, а `x_i` - значение концентрации вещества, которое мы задаем.

Мы будем рассматривать случай, когда относительная погрешность в задании `x_i` значительно меньше, относительной погрешности измерения `y_i`. Так же мы будем предполагать, что все измеренные величины `y_i` случайные и нормально распределенные, т.е. подчиняются нормальному закону распределения.

В случае линейной зависимости `y` от `x`, мы можем написать теоретическую зависимость:
`y = a + b x`.

С геометрической точки зрения, коэффициент `b` обозначает тангенс угла наклона линии к оси `x`, а коэффициент `a` - значение `y` в точке пересечения линии с осью `y` (при `x = 0`).

Нахождение параметров линии регресии.

В эксперименте измеренные значения `y_i` не могут точно лечь на теоеретическую прямую из-за ошибок измерения, всегда присущих реальной жизни. Поэтому линейное уравнение, нужно представить системой уравнений:
`y_i = a + b x_i + ε_i` (1),
где `ε_i` - неизвестная ошибка измерения `y` в `i`-ом эксперименте.

Зависимость (1) так же называют регрессией , т.е. зависимостью двух величин друг от друга со статистической значимостью.

Задачей восстановления зависимости является нахождение коэффициентов `a` и `b` по экспериментальным точкам [`y_i`, `x_i`].

Для нахождения коэффициентов `a` и `b` обычно используется метод наименьших квадратов (МНК). Он является частным случаем принципа максимального правдоподобия.

Перепишем (1) в виде `ε_i = y_i — a — b x_i`.

Тогда сумма квадратов ошибок будет
`Φ = sum_(i=1)^(n) ε_i^2 = sum_(i=1)^(n) (y_i — a — b x_i)^2`. (2)

Принципом МНК (метода наименьших квадратов) является минимизация суммы (2) относительно параметров `a` и `b` .

Минимум достигается, когда частные производные от суммы (2) по коэффициентам `a` и `b` равны нулю:
`frac(partial Φ)(partial a) = frac(partial sum_(i=1)^(n) (y_i — a — b x_i)^2)(partial a) = 0`
`frac(partial Φ)(partial b) = frac(partial sum_(i=1)^(n) (y_i — a — b x_i)^2)(partial b) = 0`

Раскрывая производные, получаем систему из двух уравнений с двумя неизвестными:
`sum_(i=1)^(n) (2a + 2bx_i — 2y_i) = sum_(i=1)^(n) (a + bx_i — y_i) = 0`
`sum_(i=1)^(n) (2bx_i^2 + 2ax_i — 2x_iy_i) = sum_(i=1)^(n) (bx_i^2 + ax_i — x_iy_i) = 0`

Раскрываем скобки и переносим независящие от искомых коэффициентов суммы в другую половину, получим систему линейных уравнений:
`sum_(i=1)^(n) y_i = a n + b sum_(i=1)^(n) bx_i`
`sum_(i=1)^(n) x_iy_i = a sum_(i=1)^(n) x_i + b sum_(i=1)^(n) x_i^2`

Решая, полученную систему, находим формулы для коэффициентов `a` и `b`:

`a = frac(sum_(i=1)^(n) y_i sum_(i=1)^(n) x_i^2 — sum_(i=1)^(n) x_i sum_(i=1)^(n) x_iy_i) (n sum_(i=1)^(n) x_i^2 — (sum_(i=1)^(n) x_i)^2)` (3.1)

`b = frac(n sum_(i=1)^(n) x_iy_i — sum_(i=1)^(n) x_i sum_(i=1)^(n) y_i) (n sum_(i=1)^(n) x_i^2 — (sum_(i=1)^(n) x_i)^2)` (3.2)

Эти формулы имеют решения, когда `n > 1` (линию можно построить не менее чем по 2-м точкам) и когда детерминант `D = n sum_(i=1)^(n) x_i^2 — (sum_(i=1)^(n) x_i)^2 != 0`, т.е. когда точки `x_i` в эксперименте различаются (т.е. когда линия не вертикальна).

Оценка погрешностей коэффициентов линии регресии

Для более точной оценки погрешности вычисления коэффициентов `a` и `b` желательно большое количество экспериментальных точек. При `n = 2`, оценить погрешность коэффициентов невозможно, т.к. аппроксимирующая линия будет однозначно проходить через две точки.

Погрешность случайной величины `V` определяется законом накопления ошибок
`S_V^2 = sum_(i=1)^p (frac(partial f)(partial z_i))^2 S_(z_i)^2`,
где `p` - число параметров `z_i` с погрешностью `S_(z_i)`, которые влияют на погрешность `S_V`;
`f` - функция зависимости `V` от `z_i`.

Распишем закон накопления ошибок для погрешности коэффициентов `a` и `b`
`S_a^2 = sum_(i=1)^(n)(frac(partial a)(partial y_i))^2 S_(y_i)^2 + sum_(i=1)^(n)(frac(partial a)(partial x_i))^2 S_(x_i)^2 = S_y^2 sum_(i=1)^(n)(frac(partial a)(partial y_i))^2 `,
`S_b^2 = sum_(i=1)^(n)(frac(partial b)(partial y_i))^2 S_(y_i)^2 + sum_(i=1)^(n)(frac(partial b)(partial x_i))^2 S_(x_i)^2 = S_y^2 sum_(i=1)^(n)(frac(partial b)(partial y_i))^2 `,
т.к. `S_(x_i)^2 = 0` (мы ранее сделали оговорку, что погрешность `x` пренебрежительно мала).

`S_y^2 = S_(y_i)^2` - погрешность (дисперсия, квадрат стандартного отклонения) в измерении `y` в предположении, что погрешность однородна для всех значений `y`.

Подставляя в полученные выражения формулы для расчета `a` и `b` получим

`S_a^2 = S_y^2 frac(sum_(i=1)^(n) (sum_(i=1)^(n) x_i^2 — x_i sum_(i=1)^(n) x_i)^2) (D^2) = S_y^2 frac((n sum_(i=1)^(n) x_i^2 — (sum_(i=1)^(n) x_i)^2) sum_(i=1)^(n) x_i^2) (D^2) = S_y^2 frac(sum_(i=1)^(n) x_i^2) (D)` (4.1)

`S_b^2 = S_y^2 frac(sum_(i=1)^(n) (n x_i — sum_(i=1)^(n) x_i)^2) (D^2) = S_y^2 frac(n (n sum_(i=1)^(n) x_i^2 — (sum_(i=1)^(n) x_i)^2)) (D^2) = S_y^2 frac(n) (D)` (4.2)

В большинстве реальных экспериментов значение `Sy` не измеряется. Для этого нужно проводить несколько паралельных измерений (опытов) в одной или нескольких точках плана, что увеличивает время (и возможно стоимость) эксперимента. Поэтому обычно полагают, что отклонение `y` от линии регрессии можно считать случайным. Оценку дисперсии `y` в этом случае, считают по формуле.

`S_y^2 = S_(y, ост)^2 = frac(sum_(i=1)^n (y_i — a — b x_i)^2) (n-2)`.

Делитель `n-2` появляется потому, что у нас снизилось число степеней свободы из-за расчета двух коэффициентов по этой же выборке экспериментальных данных.

Такую оценку еще называют остаточной дисперсией относительно линии регрессии `S_(y, ост)^2`.

Оценка значимости коэффициентов проводится по критерию Стьюдента

`t_a = frac(|a|) (S_a)`, `t_b = frac(|b|) (S_b)`

Если рассчитанные критерии `t_a`, `t_b` меньше табличных критериев `t(P, n-2)`, то считается, что соответсвующий коэффициент не значимо отличается от нуля с заданной вероятностью `P`.

Для оценки качества описания линейной зависимости, можно сравнить `S_(y, ост)^2` и `S_(bar y)` относительно среднего с использованием критерия Фишера.

`S_(bar y) = frac(sum_(i=1)^n (y_i — bar y)^2) (n-1) = frac(sum_(i=1)^n (y_i — (sum_(i=1)^n y_i) /n)^2) (n-1)` - выборочная оценка дисперсии `y` относительно среднего.

Для оценки эффективности уравнения регресии для описания зависимости расчитывают коэффициент Фишера
`F = S_(bar y) / S_(y, ост)^2`,
который сравнивают с табличным коэффициентом Фишера `F(p, n-1, n-2)`.

Если `F > F(P, n-1, n-2)`, считается статистически значимым с вероятностью `P` различие между описанием зависимости `y = f(x)` с помощью уравенения регресии и описанием с помощью среднего. Т.е. регрессия лучше описывает зависимость, чем разброс `y` относительно среднего.

Кликните по графику,
чтобы добавить значения в таблицу

Метод наименьших квадратов. Под методом наименьших квадратов понимается определение неизвестных параметров a, b, c, принятой функциональной зависимости

Под методом наименьших квадратов понимается определение неизвестных параметров a, b, c,… принятой функциональной зависимости

y = f(x,a,b,c,…) ,

которые обеспечивали бы минимум среднего квадрата (дисперсии) ошибки

, (24)

где x i , y i – совокупность пар чисел, полученных из эксперимента.

Так как условием экстремума функции нескольких переменных является условие равенства нулю ее частных производных, то параметры a, b, c,… определяются из системы уравнений:

; ; ; … (25)

Необходимо помнить, что метод наименьших квадратов применяется для подбора параметров после того, как вид функции y = f(x) определен.

Если из теоретических соображений нельзя сделать никаких выводов о том, какой должна быть эмпирическая формула, то приходится руководствоваться наглядными представлениями, прежде всего графическим изображением наблюденных данных.

На практике чаще всего ограничиваются следующими видами функций:

1) линейная ;

2) квадратичная a .

Если некоторая физическая величина зависит от другой величины, то эту зависимость можно исследовать, измеряя y при различных значениях x . В результате измерений получается ряд значений:

x 1 , x 2 , ..., x i , ... , x n ;

y 1 , y 2 , ..., y i , ... , y n .

По данным такого эксперимента можно построить график зависимости y = ƒ(x). Полученная кривая дает возможность судить о виде функции ƒ(x). Однако постоянные коэффициенты, которые входят в эту функцию, остаются неизвестными. Определить их позволяет метод наименьших квадратов. Экспериментальные точки, как правило, не ложатся точно на кривую. Метод наименьших квадратов требует, чтобы сумма квадратов отклонений экспериментальных точек от кривой, т.е. 2 была наименьшей.

На практике этот метод наиболее часто (и наиболее просто) используется в случае линейной зависимости, т.е. когда

y = kx или y = a + bx.

Линейная зависимость очень широко распространена в физике. И даже когда зависимость нелинейная, обычно стараются строить график так, чтобы получить прямую линию. Например, если предполагают, что показатель преломления стекла n связан с длиной λ световой волны соотношением n = a + b/λ 2 , то на графике строят зависимость n от λ -2 .

Рассмотрим зависимость y = kx (прямая, проходящая через начало координат). Составим величину φ – сумму квадратов отклонений наших точек от прямой

Величина φ всегда положительна и оказывается тем меньше, чем ближе к прямой лежат наши точки. Метод наименьших квадратов утверждает, что для k следует выбирать такое значение, при котором φ имеет минимум


или
(19)

Вычисление показывает, что среднеквадратичная ошибка определения величины k равна при этом

, (20)
где – n число измерений.

Рассмотрим теперь несколько более трудный случай, когда точки должны удовлетворить формуле y = a + bx (прямая, не проходящая через начало координат).

Задача состоит в том, чтобы по имеющемуся набору значений x i , y i найти наилучшие значения a и b.

Снова составим квадратичную форму φ , равную сумме квадратов отклонений точек x i , y i от прямой

и найдем значения a и b , при которых φ имеет минимум

;

.

.

Совместное решение этих уравнений дает

(21)

Среднеквадратичные ошибки определения a и b равны

(23)

.  (24)

При обработке результатов измерения этим методом удобно все данные сводить в таблицу, в которой предварительно подсчитываются все суммы, входящие в формулы (19)–(24). Формы этих таблиц приведены в рассматриваемых ниже примерах.

Пример 1. Исследовалось основное уравнение динамики вращательного движения ε = M/J (прямая, проходящая через начало координат). При различных значениях момента M измерялось угловое ускорение ε некоторого тела. Требуется определить момент инерции этого тела. Результаты измерений момента силы и углового ускорения занесены во второй и третий столбцы таблицы 5 .

Таблица 5
n M, Н · м ε, c -1 M 2 M · ε ε - kM (ε - kM) 2
1 1.44 0.52 2.0736 0.7488 0.039432 0.001555
2 3.12 1.06 9.7344 3.3072 0.018768 0.000352
3 4.59 1.45 21.0681 6.6555 -0.08181 0.006693
4 5.90 1.92 34.81 11.328 -0.049 0.002401
5 7.45 2.56 55.5025 19.072 0.073725 0.005435
– – 123.1886 41.1115 – 0.016436

По формуле (19) определяем:

.

Для определения среднеквадратичной ошибки воспользуемся формулой (20)

0.005775 кг -1 · м -2 .

По формуле (18) имеем

; .

S J = (2.996 · 0.005775)/0.3337 = 0.05185 кг · м 2 .

Задавшись надежностью P = 0.95 , по таблице коэффициентов Стьюдента для n = 5, находим t = 2.78 и определяем абсолютную ошибку ΔJ = 2.78 · 0.05185 = 0.1441 ≈ 0.2 кг · м 2 .

Результаты запишем в виде:

J = (3.0 ± 0.2) кг · м 2 ;


Пример 2. Вычислим температурный коэффициент сопротивления металла по методу наименьших квадратов. Сопротивление зависит от температуры по линейному закону

R t = R 0 (1 + α t°) = R 0 + R 0 α t°.

Свободный член определяет сопротивление R 0 при температуре 0° C , а угловой коэффициент – произведение температурного коэффициента α на сопротивление R 0 .

Результаты измерений и расчетов приведены в таблице (см. таблицу 6 ).

Таблица 6
n t°, c r, Ом t-¯ t (t-¯ t) 2 (t-¯ t)r r - bt - a (r - bt - a) 2 ,10 -6
1 23 1.242 -62.8333 3948.028 -78.039 0.007673 58.8722
2 59 1.326 -26.8333 720.0278 -35.581 -0.00353 12.4959
3 84 1.386 -1.83333 3.361111 -2.541 -0.00965 93.1506
4 96 1.417 10.16667 103.3611 14.40617 -0.01039 107.898
5 120 1.512 34.16667 1167.361 51.66 0.021141 446.932
6 133 1.520 47.16667 2224.694 71.69333 -0.00524 27.4556
515 8.403 – 8166.833 21.5985 – 746.804
∑/n 85.83333 1.4005 – – – – –

По формулам (21), (22) определяем

R 0 = ¯ R- α R 0 ¯ t = 1.4005 - 0.002645 · 85.83333 = 1.1735 Ом .

Найдем ошибку в определении α. Так как , то по формуле (18) имеем:

.

Пользуясь формулами (23), (24) имеем

;

0.014126 Ом .

Задавшись надежностью P = 0.95, по таблице коэффициентов Стьюдента для n = 6, находим t = 2.57 и определяем абсолютную ошибку Δα = 2.57 · 0.000132 = 0.000338 град -1 .

α = (23 ± 4) · 10 -4 град -1 при P = 0.95.


Пример 3. Требуется определить радиус кривизны линзы по кольцам Ньютона. Измерялись радиусы колец Ньютона r m и определялись номера этих колец m. Радиусы колец Ньютона связаны с радиусом кривизны линзы R и номером кольца уравнением

r 2 m = mλR - 2d 0 R,

где d 0 – толщина зазора между линзой и плоскопараллельной пластинкой (или деформация линзы),

λ – длина волны падающего света.

λ = (600 ± 6) нм;
r 2 m = y;
m = x;
λR = b;
-2d 0 R = a,

тогда уравнение примет вид y = a + bx .

.

Результаты измерений и вычислений занесены в таблицу 7 .

Таблица 7
n x = m y = r 2 , 10 -2 мм 2 m -¯ m (m -¯ m) 2 (m -¯ m)y y - bx - a, 10 -4 (y - bx - a) 2 , 10 -6
1 1 6.101 -2.5 6.25 -0.152525 12.01 1.44229
2 2 11.834 -1.5 2.25 -0.17751 -9.6 0.930766
3 3 17.808 -0.5 0.25 -0.08904 -7.2 0.519086
4 4 23.814 0.5 0.25 0.11907 -1.6 0.0243955
5 5 29.812 1.5 2.25 0.44718 3.28 0.107646
6 6 35.760 2.5 6.25 0.894 3.12 0.0975819
21 125.129 – 17.5 1.041175 – 3.12176
∑/n 3.5 20.8548333 – – – – –

Аппроксимация опытных данных – это метод, основанный на замене экспериментально полученных данных аналитической функцией наиболее близко проходящей или совпадающей в узловых точках с исходными значениями (данными полученными в ходе опыта или эксперимента). В настоящее время существует два способа определения аналитической функции:

С помощью построения интерполяционного многочлена n-степени, который проходит непосредственно через все точки заданного массива данных. В данном случае аппроксимирующая функция представляется в виде: интерполяционного многочлена в форме Лагранжа или интерполяционного многочлена в форме Ньютона.

С помощью построения аппроксимирующего многочлена n-степени, который проходит в ближайшей близости от точек из заданного массива данных. Таким образом, аппроксимирующая функция сглаживает все случайные помехи (или погрешности), которые могут возникать при выполнении эксперимента: измеряемые значения в ходе опыта зависят от случайных факторов, которые колеблются по своим собственным случайным законам (погрешности измерений или приборов, неточность или ошибки опыта). В данном случае аппроксимирующая функция определяется по методу наименьших квадратов.

Метод наименьших квадратов (в англоязычной литературе Ordinary Least Squares, OLS) - математический метод, основанный на определении аппроксимирующей функции, которая строится в ближайшей близости от точек из заданного массива экспериментальных данных. Близость исходной и аппроксимирующей функции F(x) определяется числовой мерой, а именно: сумма квадратов отклонений экспериментальных данных от аппроксимирующей кривой F(x) должна быть наименьшей.

Аппроксимирующая кривая, построенная по методу наименьших квадратов

Метод наименьших квадратов используется:

Для решения переопределенных систем уравнений, когда количество уравнений превышает количество неизвестных;

Для поиска решения в случае обычных (не переопределенных) нелинейных систем уравнений;

Для аппроксимации точечных значений некоторой аппроксимирующей функцией.

Аппроксимирующая функция по методу наименьших квадратов определяется из условия минимума суммы квадратов отклонений расчетной аппроксимирующей функции от заданного массива экспериментальных данных. Данный критерий метода наименьших квадратов записывается в виде следующего выражения:

Значения расчетной аппроксимирующей функции в узловых точках ,

Заданный массив экспериментальных данных в узловых точках .

Квадратичный критерий обладает рядом "хороших" свойств, таких, как дифференцируемость, обеспечение единственного решения задачи аппроксимации при полиномиальных аппроксимирующих функциях.

В зависимости от условий задачи аппроксимирующая функция представляет собой многочлен степени m

Степень аппроксимирующей функции не зависит от числа узловых точек, но ее размерность должна быть всегда меньше размерности (количества точек) заданного массива экспериментальных данных.

∙ В случае если степень аппроксимирующей функции m=1, то мы аппроксимируем табличную функцию прямой линией (линейная регрессия).

∙ В случае если степень аппроксимирующей функции m=2, то мы аппроксимируем табличную функцию квадратичной параболой (квадратичная аппроксимация).

∙ В случае если степень аппроксимирующей функции m=3, то мы аппроксимируем табличную функцию кубической параболой (кубическая аппроксимация).

В общем случае, когда требуется построить аппроксимирующий многочлен степени m для заданных табличных значений, условие минимума суммы квадратов отклонений по всем узловым точкам переписывается в следующем виде:

- неизвестные коэффициенты аппроксимирующего многочлена степени m;

Количество заданных табличных значений.

Необходимым условием существования минимума функции является равенству нулю ее частных производных по неизвестным переменным . В результате получим следующую систему уравнений:

Преобразуем полученную линейную систему уравнений: раскроем скобки и перенесем свободные слагаемые в правую часть выражения. В результате полученная система линейных алгебраических выражений будет записываться в следующем виде:

Данная система линейных алгебраических выражений может быть переписана в матричном виде:

В результате была получена система линейных уравнений размерностью m+1, которая состоит из m+1 неизвестных. Данная система может быть решена с помощью любого метода решения линейных алгебраических уравнений (например, методом Гаусса). В результате решения будут найдены неизвестные параметры аппроксимирующей функции, обеспечивающие минимальную сумму квадратов отклонений аппроксимирующей функции от исходных данных, т.е. наилучшее возможное квадратичное приближение. Следует помнить, что при изменении даже одного значения исходных данных все коэффициенты изменят свои значения, так как они полностью определяются исходными данными.

Аппроксимация исходных данных линейной зависимостью

(линейная регрессия)

В качестве примера, рассмотрим методику определения аппроксимирующей функции, которая задана в виде линейной зависимости. В соответствии с методом наименьших квадратов условие минимума суммы квадратов отклонений записывается в следующем виде:

Координаты узловых точек таблицы;

Неизвестные коэффициенты аппроксимирующей функции, которая задана в виде линейной зависимости.

Необходимым условием существования минимума функции является равенству нулю ее частных производных по неизвестным переменным. В результате получаем следующую систему уравнений:

Преобразуем полученную линейную систему уравнений.

Решаем полученную систему линейных уравнений. Коэффициенты аппроксимирующей функции в аналитическом виде определяются следующим образом (метод Крамера):

Данные коэффициенты обеспечивают построение линейной аппроксимирующей функции в соответствии с критерием минимизации суммы квадратов аппроксимирующей функции от заданных табличных значений (экспериментальные данные).

Алгоритм реализации метода наименьших квадратов

1. Начальные данные:

Задан массив экспериментальных данных с количеством измерений N

Задана степень аппроксимирующего многочлена (m)

2. Алгоритм вычисления:

2.1. Определяются коэффициенты для построения системы уравнений размерностью

Коэффициенты системы уравнений (левая часть уравнения)

- индекс номера столбца квадратной матрицы системы уравнений

Свободные члены системы линейных уравнений (правая часть уравнения)

- индекс номера строки квадратной матрицы системы уравнений

2.2. Формирование системы линейных уравнений размерностью .

2.3. Решение системы линейных уравнений с целью определения неизвестных коэффициентов аппроксимирующего многочлена степени m.

2.4.Определение суммы квадратов отклонений аппроксимирующего многочлена от исходных значений по всем узловым точкам

Найденное значение суммы квадратов отклонений является минимально-возможным.

Аппроксимация с помощью других функций

Следует отметить, что при аппроксимации исходных данных в соответствии с методом наименьших квадратов в качестве аппроксимирующей функции иногда используют логарифмическую функцию, экспоненциальную функцию и степенную функцию.

Логарифмическая аппроксимация

Рассмотрим случай, когда аппроксимирующая функция задана логарифмической функцией вида:

Он имеет множество применений, так как позволяет осуществлять приближенное представление заданной функции другими более простыми. МНК может оказаться чрезвычайно полезным при обработке наблюдений, и его активно используют для оценки одних величин по результатам измерений других, содержащих случайные ошибки. Из этой статьи вы узнаете, как реализовать вычисления по методу наименьших квадратов в Excel.

Постановка задачи на конкретном примере

Предположим, имеются два показателя X и Y. Причем Y зависит от X. Так как МНК интересует нас с точки зрения регрессионного анализа (в Excel его методы реализуются с помощью встроенных функций), то стоит сразу же перейти к рассмотрению конкретной задачи.

Итак, пусть X — торговая площадь продовольственного магазина, измеряемая в квадратных метрах, а Y — годовой товарооборот, определяемый в миллионах рублей.

Требуется сделать прогноз, какой товарооборот (Y) будет у магазина, если у него та или иная торговая площадь. Очевидно, что функция Y = f (X) возрастающая, так как гипермаркет продает больше товаров, чем ларек.

Несколько слов о корректности исходных данных, используемых для предсказания

Допустим, у нас есть таблица, построенная по данным для n магазинов.

Согласно математической статистике, результаты будут более-менее корректными, если исследуются данные по хотя бы 5-6 объектам. Кроме того, нельзя использовать «аномальные» результаты. В частности, элитный небольшой бутик может иметь товарооборот в разы больший, чем товарооборот больших торговых точек класса «масмаркет».

Суть метода

Данные таблицы можно изобразить на декартовой плоскости в виде точек M 1 (x 1 , y 1), … M n (x n , y n). Теперь решение задачи сведется к подбору аппроксимирующей функции y = f (x), имеющей график, проходящий как можно ближе к точкам M 1, M 2, .. M n .

Конечно, можно использовать многочлен высокой степени, но такой вариант не только труднореализуем, но и просто некорректен, так как не будет отражать основную тенденцию, которую и нужно обнаружить. Самым разумным решением является поиск прямой у = ax + b, которая лучше всего приближает экспериментальные данные, a точнее, коэффициентов - a и b.

Оценка точности

При любой аппроксимации особую важность приобретает оценка ее точности. Обозначим через e i разность (отклонение) между функциональными и экспериментальными значениями для точки x i , т. е. e i = y i - f (x i).

Очевидно, что для оценки точности аппроксимации можно использовать сумму отклонений, т. е. при выборе прямой для приближенного представления зависимости X от Y нужно отдавать предпочтение той, у которой наименьшее значение суммы e i во всех рассматриваемых точках. Однако, не все так просто, так как наряду с положительными отклонениями практически будут присутствовать и отрицательные.

Решить вопрос можно, используя модули отклонений или их квадраты. Последний метод получил наиболее широкое распространение. Он используется во многих областях, включая регрессионный анализ (в Excel его реализация осуществляется с помощью двух встроенных функций), и давно доказал свою эффективность.

Метод наименьших квадратов

В Excel, как известно, существует встроенная функция автосуммы, позволяющая вычислить значения всех значений, расположенных в выделенном диапазоне. Таким образом, ничто не помешает нам рассчитать значение выражения (e 1 2 + e 2 2 + e 3 2 + ... e n 2).

В математической записи это имеет вид:

Так как изначально было принято решение об аппроксимировании с помощью прямой, то имеем:

Таким образом, задача нахождения прямой, которая лучше всего описывает конкретную зависимость величин X и Y, сводится к вычислению минимума функции двух переменных:

Для этого требуется приравнять к нулю частные производные по новым переменным a и b, и решить примитивную систему, состоящую из двух уравнений с 2-мя неизвестными вида:

После нехитрых преобразований, включая деление на 2 и манипуляции с суммами, получим:

Решая ее, например, методом Крамера, получаем стационарную точку с некими коэффициентами a * и b * . Это и есть минимум, т. е. для предсказания, какой товарооборот будет у магазина при определенной площади, подойдет прямая y = a * x + b * , представляющая собой регрессионную модель для примера, о котором идет речь. Конечно, она не позволит найти точный результат, но поможет получить представление о том, окупится ли покупка в кредит магазина конкретной площади.

Как реализоавать метод наименьших квадратов в Excel

В "Эксель" имеется функция для расчета значения по МНК. Она имеет следующий вид: «ТЕНДЕНЦИЯ» (известн. значения Y; известн. значения X; новые значения X; конст.). Применим формулу расчета МНК в Excel к нашей таблице.

Для этого в ячейку, в которой должен быть отображен результат расчета по методу наименьших квадратов в Excel, введем знак «=» и выберем функцию «ТЕНДЕНЦИЯ». В раскрывшемся окне заполним соответствующие поля, выделяя:

  • диапазон известных значений для Y (в данном случае данные для товарооборота);
  • диапазон x 1 , …x n , т. е. величины торговых площадей;
  • и известные, и неизвестные значения x, для которого нужно выяснить размер товарооборота (информацию об их расположении на рабочем листе см. далее).

Кроме того, в формуле присутствует логическая переменная «Конст». Если ввести в соответствующее ей поле 1, то это будет означать, что следует осуществить вычисления, считая, что b = 0.

Если нужно узнать прогноз для более чем одного значения x, то после ввода формулы следует нажать не на «Ввод», а нужно набрать на клавиатуре комбинацию «Shift» + «Control»+ «Enter» («Ввод»).

Некоторые особенности

Регрессионный анализ может быть доступен даже чайникам. Формула Excel для предсказания значения массива неизвестных переменных — «ТЕНДЕНЦИЯ» — может использоваться даже теми, кто никогда не слышал о методе наименьших квадратов. Достаточно просто знать некоторые особенности ее работы. В частности:

  • Если расположить диапазон известных значений переменной y в одной строке или столбце, то каждая строка (столбец) с известными значениями x будет восприниматься программой в качестве отдельной переменной.
  • Если в окне «ТЕНДЕНЦИЯ» не указан диапазон с известными x, то в случае использования функции в Excel программа будет рассматривать его как массив, состоящий из целых чисел, количество которых соответствует диапазону с заданными значениями переменной y.
  • Чтобы получить на выходе массив «предсказанных» значений, выражение для вычисления тенденции нужно вводить как формулу массива.
  • Если не указаны новые значения x, то функция «ТЕНДЕНЦИЯ» считает их равным известным. Если и они не заданы, то в качестве аргумента берется массив 1; 2; 3; 4;…, который соразмерен диапазону с уже заданными параметрами y.
  • Диапазон, содержащий новые значения x должен состоять из такого же или большего количества строк или столбцов, как диапазон с заданными значениями y. Иными словами он должен быть соразмерным независимым переменным.
  • В массиве с известными значениями x может содержаться несколько переменных. Однако если речь идет лишь об одной, то требуется, чтобы диапазоны с заданными значениями x и y были соразмерны. В случае нескольких переменных нужно, чтобы диапазон с заданными значениями y вмещался в одном столбце или в одной строке.

Функция «ПРЕДСКАЗ»

Реализуется с помощью нескольких функций. Одна из них называется «ПРЕДСКАЗ». Она аналогична «ТЕНДЕНЦИИ», т. е. выдает результат вычислений по методу наименьших квадратов. Однако только для одного X, для которого неизвестно значение Y.

Теперь вы знаете формулы в Excel для чайников, позволяющие спрогнозировать величину будущего значения того или иного показателя согласно линейному тренду.



КУЛЬТУРА

Закон о коллекторской деятельности вступил в силу Требования к коллекторам после июля года

Закон о коллекторской деятельности вступил в силу Требования к коллекторам после июля года

4.64/5 (11) Кто такие коллекторы Дорогие читатели нашего сайта! Наши статьи рассказывают о типовых способах решения юридических вопросов, но каждый случай носит уникальный характер. Если вы...
Домашний кетчуп из томатного сока, рецепт как сделать томатную пасту на зиму

Домашний кетчуп из томатного сока, рецепт как сделать томатную пасту на зиму

Вкусный томатный сок один из наиболее полезных овощных напитков, который любят и дети и взрослые. Его можно купить в магазине, а можно сделать самостоятельно из свежих плодов или уже готовой...
Как приготовить свежую селедку в духовке и на сковороде

Как приготовить свежую селедку в духовке и на сковороде

Селедка – самая распространенная и популярная рыба, которая есть на прилавках всех рыбных магазинов. Эта рыба очень вкусная и в жареном, и в запеченном виде. Не стоит забывать и о пользе рыбных...
Праведный Алексий Мечёв Алексей мечев о воле божьей

Праведный Алексий Мечёв Алексей мечев о воле божьей

«Отчего все святые апостолы, все до единого приняли мученический венец, погибли на крестах, были усечены мечом, а апостол Иоанн Богослов дожил до глубокой старости и мирно скончался? — спросил...
Вкусные морковные котлеты

Вкусные морковные котлеты

Как приготовить морковные котлеты, чтобы сохранить все полезные и лечебные свойства блюда. Морковные котлеты в мультиварке входят в состав почти всех лечебных диет, разрешены даже в строгой диете...
Сильный заговор от тюрьмы

Сильный заговор от тюрьмы

К большому сожалению, не все люди могут узнать свое будущее. Некоторые из них могут быть успешными людьми и через несколько лет уже сидеть в тюрьме. Жизнь – это сложная вещь, которая имеет свои...
Сотрудничество вузов рф с высшими учебными заведениями германии на примере спбгу

Сотрудничество вузов рф с высшими учебными заведениями германии на примере спбгу

Студенческая мобильность – это возможность провести один или два семестра в другой стране в качестве студента или стажера зарубежного университета, не прерывая своего обучения в СПбГУ. Задача...
Определение полуденной линии §5

Определение полуденной линии §5

В данной местности каждая звезда кульминирует всегда на одной и той же высоте над горизонтом, потому что ее угловое расстояние от полюса мира и от небесного экватора остается неизменным. Солнце же...
Инструкция по заполнению 4 фсс

Инструкция по заполнению 4 фсс

Новая форма 4-ФСС - это расчет по страховым взносам на случай травматизма. Также в расчете отражают данные о пособиях при несчастных случаях, медосмотрах сотрудников и рабочих мест. Форма расчета...
К чем падает икона в доме

К чем падает икона в доме

В этой статье вы найдете толкования примет, связанных с падением икон в доме. К чему уронил икону, падает икона в доме со стены, с полки: народная примета. Что случается после падения иконы?...