Схема проверки обратного тока коллектора мощных транзисторов. Тестер полупроводниковых радиоэлементов на микроконтроллере

Хочу поделится очень полезной для каждого радиолюбителя схемой, найденной на просторах интернета и успешно повторенную. Это действительно очень нужный прибор, имеющий много функций и собранный на основе недорогого микроконтроллера ATmega8. Деталей минимум, поэтому при наличии готового программатора собирается за вечер.

Данный тестер с высокой точностью определяет номера и типы выводов транзистора, тиристора, диода и т.д. Будет очень полезен как начинающему радиолюбителю, так и профессионалам.

Особенно незаменим он в тех случаях, когда имеются запасы транзисторов с полустёртой маркировкой, или если не получается найти даташит на какой-нибудь редкий китайский транзистор. Схема на рисунке, кликните для увеличения или скачайте архив:

Типы тестируемых радиоэлементов

Имя элемента - Индикация на дисплее :

NPN транзисторы - на дисплее "NPN"
- PNP транзисторы - на дисплее "PNP"
- N-канальные-обогащенные MOSFET - на дисплее "N-E-MOS"
- P-канальные-обогащенные MOSFET - на дисплее "P-E-MOS"
- N-канальные-обедненные MOSFET - на дисплее "N-D-MOS"
- P-канальные-обедненные MOSFET - на дисплее "P-D-MOS"
- N-канальные JFET - на дисплее "N-JFET"
- P-канальные JFET - на дисплее "P-JFET"
- Тиристоры - на дисплее "Tyrystor"
- Симисторы - на дисплее "Triak"
- Диоды - на дисплее "Diode"
- Двухкатодные сборки диодов - на дисплее "Double diode CK"
- Двуханодные сборки диодов - на дисплее "Double diode CA"
- Два последовательно соединенных диода - на дисплее "2 diode series"
- Диоды симметричные - на дисплее "Diode symmetric"
- Резисторы - диапазон от 0,5 К до 500К [K]
- Конденсаторы - диапазон от 0,2nF до 1000uF

Описание дополнительных параметров измерения:

H21e (коэффициент усиления по току) - диапазон до 10000
- (1-2-3) - порядок подключенных выводов элемента
- Наличие элементов защиты - диода - "Символ диода"
- Прямое напряжение - Uf
- Напряжение открытия (для MOSFET) - Vt
- Емкость затвора (для MOSFET) - C=

В списке приводится вариант отображения информации для английской прошивки. На момент написания статьи появилась русская прошивка, с которой всё стало гораздо понятнее. для программирования контроллера ATmega8 можно тут.

Сама конструкция получается довольно компактной - примерно с пачку сигарет. Питание от батареи "крона" на 9В. Потребляемый ток 10-20мА.

Для удобства подключения испытуемых деталей, надо подобрать подходящий универсальный разъём. А лучше несколько - для различных типов радиодеталей.

Кстати, у многих радиолюбителей часто возникают проблемы с проверкой полевых транзисторов, в том числе с изолированным затвором. Имея данное устройство, вы сможете за пару секунд узнать и его цоколёвку, и работоспособность, и ёмкость перехода, и даже наличие встроенного защитного диода.

Планарные smd транзисторы тоже с трудом поддаются расшифровке. А многие радиодетали для поверхностного монтажа иногда не удаётся даже примерно определению - или то диод, или что ещё...

Что касается обычных резисторов, то и тут налицо превосходство нашего тестера над обычными омметрами, входящими в состав цифровых мультиметров DT. Здесь реализовано автоматическое переключение необходимого диапазона измерения.

Это касается и проверки конденсаторов - пикофарады, нанофарады, микрофарады. Просто подключите радиодеталь к гнёздам прибора и нажмите кнопку TEST - на экране сразу отобразится вся основная информация о элементе.

Готовый тестер можно разместить в любом небольшом пластмассовом корпусе. Устройство собрано и успешно испытано.

Обсудить статью ТЕСТЕР ПОЛУПРОВОДНИКОВЫХ РАДИОЭЛЕМЕНТОВ НА МИКРОКОНТРОЛЛЕРЕ

Это очередная статья, посвященная начинающему радиолюбителю. Проверка работоспособности транзисторов пожалуй самое важно дело, поскольку именно нерабочий транзистор является причиной отказа работы всей схемы. Чаще всего у начинающих любителей электроники возникают проблемы с проверкой полевых транзисторов, а если под рукой нет даже мультиметра, то проверить транзистор на работоспособность очень трудно. Предложенное устройство позволяет за несколько секунд проверить любой транзистор, независимо от типа и проводимости.

Устройство очень простое и состоит из трех компонентов. Основная часть - трансформатор. За основу можно взять любой малогабаритный трансформатор от импульсных блоков питания. Трансформатор состоит из двух обмоток. Первичная обмотка состоит из 24 витков с отводом от середины, провод от 0,2 до 0,8 мм.

Вторичная обмотка состоит из 15 витков провода того же диаметра, что и первичка. Обе обмотки мотаются в одинаковом направлении.

Светодиод подключен к вторичной обмотке через ограничительный резистор 100 ом, мощность резистора не важна, полярность светодиода тоже, поскольку на выходе трансформатора образуется переменное напряжение.
Присутствует также специальная насадка, в которую вставляется транзистор с соблюдением цоколевки. Для биполярных транзисторов прямой проводимости (типа КТ 818, КТ 814, КТ 816 , КТ 3107 и т. п.) база через базовый резистор 100 ом идет на одну из выводов (левый или правый вывод) трансформатора, средняя точка трансформатора (отвод) подключен к плюсу питания, эмиттер транзистора подключается к минусу питания, а коллектор к свободному выводу первичной обмотки трансформатора.

Для биполярных транзисторов обратной проводимости, нужно всего лишь поменять полярность питания. То же самое и с полевыми транзисторами, важно только не перепутать цоколевку транзистора. Если после подачи питание светодиод начинает светится, значит транзистор рабочий, если же нет, значит бросайте в мусор, поскольку прибор обеспечивает 100% точность проверки транзистора. Эти подключения нужно делать всего один раз, во время сборки прибора, насадка позволяет значительным образом сократить время проверки транзистора, нужно всего лишь вставлять транзистор в нее и подать питание.
Устройство по идее является простейшим блокинг - генератором. Питание 3,7 - 6 вольт, отлично подойдет всего один литий - ионный аккумулятор от мобильного телефона, но с аккумулятора заранее нужно выпаять плату, поскольку эта плата отключает питание потребление тока превышает 800 мА, а наша схема может в пиках потреблять такой ток.
Готовое устройство получается достаточно компактным, можно поместить в компактный пластмассовый корпус, например от конфет типа тик- так и у вас будет карманный прибор для проверки транзисторов на все случаи жизни.

Вероятно нет такого радиолюбителя который бы не исповедовал культ радиотехнического лабораторного оборудования. В первую очередь это , приставки к ним и пробники, которые в большинстве являются изготовленными самостоятельно. А так как измерительных приборов много не бывает и это аксиома, как-то собрал небольшой по размерам и с весьма несложной схемой испытатель транзисторов и диодов. Давно уже есть не плохой мультиметр, а самодельным тестером, во многих случаях, продолжаю пользоваться по прежнему.

Схема прибора

Конструктор пробника состоит всего из 7 электронных компонентов + печатная плата. Собирается быстро и работать начинает абсолютно без всякой настройки.

Схема собрана на микросхеме К155ЛН1 содержащей шесть инверторов.При правильном подключении к ней выводов исправного транзистора зажигается один из светодиодов (HL1 при структуре N-P-N и HL2 при P-N-P). Если неисправен:

  1. пробит, вспыхивают оба светодиода
  2. имеет внутренний обрыв, оба не зажигаются

Проверяемые диоды подключаются к выводам «К» и «Э». В зависимости от полярности подключения загораться будут HL1 или HL2.

Компонентов схемы совсем не много но лучше изготовить печатную плату, хлопотно паять провода к ножкам микросхемы напрямую.

И постарайтесь не забыть поставить под микросхему панельку.

Пользоваться пробником можно и без установки его в корпус, но если затратить ещё немного время на его изготовление, то будете иметь полноценный, мобильный пробник, который уже можно взять с собой (например на радиорынок). Корпус на фото изготовлен из пластмассового корпуса квадратной батарейки, которая уже своё отработала. Всего-то делов было удалить прежнее содержимое и отпилить излишки, просверлить отверстия под светодиоды и приклеить планку с разъёмами для подключения проверяемых транзисторов. На разъёмы не лишним будет «одеть» цвета опознавания. Кнопка включения обязательна. Блок питания это привёрнутый несколькими винтами к корпусу батарейный отсек формата ААА.

Крепёжные винты, небольшого размера, удобно пропустить через плюсовые контакты и привернуть с обязательным использованием гаек.

Испытатель в полной готовности. Оптимальным будет использование аккумуляторов ААА, четыре штуки по 1,2 вольта дадут лучший вариант питаемого напряжения в 4,8 вольта.

С помощью описываемого здесь прибора можно измерить обратный ток коллекторного перехода IКБ0 и статический коэффициент передачи тока h2)9 маломощных транзисторов структур р-п-р и п-р-п.

Конструктивно испытатель транзисторов выполнен в виде приставки к аво-метру, так же как транзисторные вольтметры постоянного и переменного токов. Для соединения с микроамперметром авометра приставка снабжена штепсельной колодкой, которую при измерениях вставляют в гнезда «100 мкА» на передней панели авометра. При этом переключатель вида измерений авометра должен находиться в положении «V».

Питается прибор стабилизированным напряжением 9 В от нерегулируемого источника блока питания.

Прежде чем перейти к описанию принципиальной схемы испытателя, несколько слов о положенном в его основу принципе. Подавляющее большинство описанных в радиолюбительской, литературе простых испытателей транзисторов рассчитано на измерение, статического коэффициента передачи тока hjis при фиксированном токе базы (обычно-100 мкА). Это облегчает измерения [шкалу прибора в цепи коллектора проверяемого транзистора можно отградуировать непосредственно в значениях hi20 = lHRB/UcB, где Ugb - напряжение батареи (см. рис. 20,6)], однако такие испытатели имеют существенный недостаток. Дело в том, что коэффициент передачи тока h2is в значительной мере зависит от режима работы транзистора и в первую очередь от тока эмиттера 1э. Вот почему в справочниках всегда приводятся не только значения коэффициента передачи тока h2iв, но и условия, в которых он измерен (ток Iв и напряжение между коллектором и эмиттером Ukb).

Статический коэффициент передачи тока h2is маломощных транзисторов обычно измеряют при токе Ь=0,5 мА (низкочастотные маломощные транзисторы) , 1 мА (остальные низкочастотные) или 10 мА (транзисторы, предназначенные для работы в импульсном режиме). Напряжение 1Лкэ при измерении этого параметра обычно близко к 5 В. Поскольку коэффициент h2ia мало зависит от Uks, у транзисторов малой мощности (кроме высокочастотных) его можно измерять при одном и том же значении Uks.

В испытателях, измеряющих статический коэффициент передачи тока при фиксированном токе базы, коллекторные (а следовательно, и эмиттерные) токи проверяемых транзисторов даже одного типа практически всегда разные. А это значит, что сопоставить результаты измерений со справочными данными (при определенном токе эмиттера) просто невозможно.

Приборы, в которых возможна установка любого заданного тока коллектора (или эмиттера), позволяют получить сопоставимые значения параметра h2iв, однако такие испытатели неудобны в работе, так как требуют при каждом измерении устанавливать ток коллектора заново.

Этих недостатков нет у испытателя транзисторов, входящего в лабораторию. Он рассчитан на измерение статического коэффициента передачи тока h2is при нескольких фиксированных значениях стабилизированного тока эмиттера. Это позволяет оценить усилительные свойства транзистора в режиме, близком к рабочему, т. е. при токе, текущем через транзистор в устройстве, для которого он предназначен.

Упрощенная схема измерителя статического коэффициента передачи тока h2)g при стабилизированном (фиксированном) токе эмиттера изображена на рис. 44. Проверяемый транзистор VT вместе с элементами испытателя образует стабилизатор тока. Напряжение на базе транзистора стабилизировано стабилитроном VD, поэтому в его эмиттерной (коллекторной) цепи течет ток, практически не зависящий от изменения напряжения источника питания GB. Этот ток можно рассчитать по формуле 1b=(\Jvd-Use)/R2, где 1э - эмиттерный ток (в амперах), Uvd - напряжение на стабилитроне (в вольтах), Use - падение напряжения на эмиттерном переходе транзистора (также в вольтах), R2 - сопротивление (в омах) резистора в эмиттерной цепи транзистора. Для получения разных токов через транзистор, в его эмиттерную цепь достаточно ввести переключатель с набором постоянных резисторов, сопротивления которых рассчитаны по приведенной формуле. Поскольку при фиксированном значении тока эмиттера ток базы обратно пропорционален статическому коэффициенту передачи тока h2is (чем он больше, тем меньше ток базы, и наоборот), шкалу прибора РА в цепи базы проверяемого транзистора можно отградуировать в значениях h2i8.

Радиолюбителю приходится иметь дело как с германиевыми, так и с кремниевыми транзисторами. У первых напряжение Uaii=0,2...0,3 В, у вторых Шб=0,6...0,7 В. Чтобы не усложнять прибор, при расчете сопротивлений резисторов, задающих эмиттерные токи, можно взять среднее значение падения напряжения на эмиттерном переходе, равное 0,4 В. В этом случае отклонение тока эмиттера при испытании любых маломощных транзисторов (и выбранном напряжении на стабилитроне Uvd = 4,7 В) не превышает ±10% от номинального, что вполне допустимо.

Принципиальная схема испытателя транзисторов изображена на рис. 45. Он предназначен для измерения обратного тока коллектора Iki;o до 100 мкА и статического коэффициента передачи тока h2ia от 10 до 100 при токе эмиттера la = 1 мА и от 20 до 200 при токах эмиттера, равных 2; 5 и 10 мА. Ориентировочно можно измерить и большие значения параметра h2iв. Если, например, считать минимальный измеряемый ток базы равным 2 мкА, что соответствует одному делению шкалы микроамперметра М24, то при эмиттерном токе 1 мА можно регистрировать значения коэффициента h2is до 500, при токах 2, 5 и 10 мА - до 1000. Следует учесть, что погрешность измерений таких значений h2ia может достигать десятков процентов.

Проверяемый транзистор VT подключают к гнездам розетки XS1. Эмиттер-ный ток, при котором необходимо измерить коэффициент h2is, выбирают переключателем SA3, включающим (секцией SA3.2) в эмиттерную цепь транзистора

один из резисторов R5 - R8. Для получения указанных пределов измерений коэффициента h2ia (20...200) при токах эмиттера, равных б и 10 мА, в третьем и четвертом положениях переключателя SA3 параллельно микроамперметру РА1 авометра подключаются соответственно резисторы R3 и R2, в результате чего ток полного отклонения его стрелки возрастает в первом случае до 250, а во втором - до 500 мкА.

Из режима измерения коэффициента Ьцэ в режим контроля обратного тока коллектора 1кбо испытатель переводят переключателем SA2. Первый из этих параметров измеряют при напряжении на коллекторе (относительно эмиттера) около 4,7 В, второй - при таком же напряжении, снимаемом со стабилитрона VD1.

Переключателем SA1 изменяют полярность включения источника питания, микроамперметра РА1 и стабилитрона VD1 при испытании транзисторов разной структуры (p-n-р или п-р-п). Резистор R4, вводимый в цепь коллекторного перехода при измерении 1кво, ограничивает ток через микроамперметр в случае, если переход оказывается пробитым. Ток 1кво и коэффициент h2is измеряют при нажатой кнопке SB1.

Конструкция и детали. Внешний вид испытателя транзисторов вместе с аво-метром показан на рис. 46, разметка его лицевой панели - на рис. 47, разметка монтажной платы и схема соединений деталей приставки - на рис. 48.

Как и в транзисторных вольтметрах, несущим элементом конструкции является корпус приставки, изготовленный из листового алюминиевого сплава АМц-П толщиной 1 мм. На лицевой панели (верхней стенке) закреплены кнопка SB1, плата с зажимами для подключения выводов транзисторов и четыре латунные стойки диаметром 4 и длиной 19 мм с резьбовыми отверстиями М2 (глубиной 6 мм) для винтов крепления монтажной платы, на боковой стенке - штепсельная колодка для соединения приставки с микроамперметром авометра.

П-образная крышка (материал тот же, что и корпуса) с пластмассовой пластиной толщиной 3...4 мм прикреплена к корпусу винтами М2х8 с потайными головками. Винты ввинчены в гайки М2, приклеенные к полочкам корпуса с внутренней стороны.

Переключатели SA1 - SA3 - движковые от транзисторного радиоприемника «Сокол». Два из них (SA1 и SA2) использованы без переделки, третий (SA3) переделан в двухполюсный на четыре положения. Для этого удалены крайние неподвижные контакты (по одному в каждом ряду), а подвижные переставлены таким образом, чтобы обеспечивалась схема коммутации, изображенная на рис. 49.

Выводы контактов переключателей вставлены в отверстия 0 2,6 мм платы с обратной стороны (по рис. 48, а) и удерживаются на ней припаянными к ним соединительными проводами (МГШВ сечением 0,14 мм2) и выводами резисторов R1-R8 (MJIT) и стабилитрона VD1. Резисторы R5 - R8 изображены за контуром платы условно, на самом деле они расположены между выводами переключателей SA3 и SA2.

Конструкция гнездовой колодки XS1 для подсоединения выводов транзисторов к испытателю показана на рис. 50. Ее корпус состоит из деталей 1 и 3, изготовленных из листового органического стекла и склеенных дихлорэтаном. Контакты 2 изготовлены из листовой бронзы (можно использовать твердую латунь) толщиной 0,3 мм. Чтобы к испытателю можно было подключать транзисторы различной конструкции и с разным расположением выводов, число контактов выбрано равным пяти, а расстояние между ними - 2,5 мм. К корпусу приставки колодка прикреплена двумя винтами М2Хб с потайными головками. Такими же винтами на боковой стенке корпуса закреплена штепсельная колодка, служащая для соединения приставки с микроамперметром авометра.

Устройство самодельной кнопки SB1 показано на рис. 51. Ее корпус состоит из деталей 2 и 5, выпиленных из органического стекла и склеенных дихлорэтаном. Контакты 1 и 3 закреплены на детали 2 заклепками 6. Сама кнопка 4 соединена с подвижным контактом 3 винтом МЗХ5. Для крепления кнопки к корпусу приставки в торцах деталей 2 и 5 предусмотрены резьбовые отверстия под винты М2. Контакты 1 и 3 изготовлены из того же материала, что и пружинящие контакты гнездовой колодки для подключения транзисторов, кнопка 4 - из полистирола (можно использовать органическое стекло, текстолит и т. д.).

Как и в ранее описанных приборах-приставках, для соединения с блоком питания лаборатории использован двухпроводный шнур, оканчивающийся штепселями диаметром 3 мм.

Все надписи выполнены на листе плотной бумаги и защищены от повреждений прозрачной накладкой из органического стекла толщиной 2 мм. Для крепления к корпусу использованы один из винтов крепления колодки для подключения транзисторов и три винта М2х5, ввинченные в резьбовые отверстия накладки.

Налаживание правильно смонтированного испытателя транзисторов сводится в основном к подбору резисторов R3 и R2. Первый подбирают таким образом, чтобы при подключении его к микроамперметру авометра верхний предел измерений повышался до 250 мкА, а второй - таким образом, чтобы он увеличивался до 500 мкА. Практически это удобно делать, собрав электрическую цепь (рис. 52) из микроамперметра авометра РА1, образцового микроамперметра РА2 с пределом измерения 300...500 мкА, батареи GB напряжением 4,5 В (3336Л или три любых гальванических элемента, соединенных последовательно), резистора-шунта R1, токоограничительного резистора R2 и выключателя SA. Установив движки резисторов R1 и R2 в крайнее левое (по схеме) положение (т. е. в положение, соответствующее их максимальному сопротивлению), замыкают электрическую цепь выключателем SA. Затем, попеременно уменьшая сопротивление обоих резисторов, добиваются того, чтобы при токе 250 мкА, отсчитанном по образцовому микроамперметру РА2, стрелка микроамперметра авометра PAl установилась точно на последнюю отметку шкалы. После этого цепь разрывают и отключают приставку от авометра. Переключив последний в режим омметра, измеряют сопротивление введенной части переменного резистора R1 и подбирают постоянный резистор (R3) точно такого же сопротивления (при необходимости его можно составить из двух параллельно или последовательно соединенных резисторов).

Аналогично, но по току в измерительной цепи, равному 500 мкА, подбирают резистор R2. Подобранные резисторы R3 и R2 устанавливают на плату.

Шкалу для измерения статического коэффициента передачи тока h2i9 (или таблицу, если нет желания или возможности разбирать микроамперметр аво-метра) рассчитывают по формуле h2ia = Iэ/1б (здесь 1э - ток эмиттера, соответствующий выбранному режиму измерений; 1б - выраженный в этих же единицах ток базы, отсчитанный по шкале микроамперметра, оба тока в милли- или микроамперах). Значения коэффициента h2i3, соответствующие разным токам базы и эмиттера, приведены в табл. 1.

Проверку транзистора начинают с измерения тока коллекторного перехода 1ябо. Для этого переключатель SA1 устанавливают в положение, соответствующее структуре испытываемого транзистора, SA2 - в положение «1кво» и нажимают на кнопку SB1 («Изм.»). Убедившись в исправнвсти перехода (у германиевых маломощных транзисторов ток 1кбо может достигать нескольких микроампер, у кремниевых он ничтожно мал), переключатель SA2 переводят в положение «h2is», переключателем SA3 устанавливают ток эмиттера, при котором необходимо определить коэффициент h21e, и, нажав на кнопку SB1, отсчитывают значение h2is по шкале микроамперметра (или переводят измеренный ток базы в значение коэффициента, пользуясь таблицей).

Если в авометре использован микроамперметр с параметрами, отличающимися от приведенных в описании авометра, сопротивление резисторов R2 и R3 придется рассчитать и подобрать применительно к имеющемуся прибору.

Испытатель транзисторов средней и большой мощности желательно иметь в измерительной лаборатории радиолюбителя. Особенно он необходим при подборе пар транзисторов для оконечных двухтактных каскадов усилителей звуковой частоты мощностью более 0,25 Вт.

Предлагаемым прибором можно испытать на пробой коллекторный переход транзистора, измерить статический коэффициент передачи тока h21э, проверить стабильность работы транзистора. Испытания проводят при включении транзистора по схеме с общим эмиттером. Индикатором служит миллиамперметр на ток 1 мА. Источником питания служит выпрямитель, обеспечивающий постоянное напряжение 12 В при токе до 300 мА. Обратный ток коллекторного перехода Irbo не измеряют, поскольку он у разных транзисторов может быть от нескольких микроампер до 12...15 мА и этот параметр практически не влияет на подбор пар транзисторов для работы в усилителе мощности.

Принципиальная схема прибора приведена на рис. 1. Проверяемый транзистор VT подключают выводами., электродов,к соответствующим им зажимам прибора. Переключателем SA1 устанавливают структуру транзистора. При этом к транзистору подключается источник питания в полярности, соответствующей его структуре. Далее производят проверку транзисторов, соблюдая следующий порядок: проверяют на пробой коллекторный переход; устанавливают ток базы Iб равный 1 мА; измеряют статический коэффициент передачи тока h 21э

Измерения этих параметров транзисторов средней и большой мощности иллюстрируют схемы, показанные на рис. 2.

Коллекторный переход испытывают, нажав кнопку SB2 Пробой. При этом в коллекторную цепь проверяемого транзистора VT включаются резистор R4 и миллиамперметр РА1, минусовой зажим которого соединен с источником питания, а параллельно коллекторному переходу подключаются резисторы Rl - R3 (рис. 2, а).

В это время движки переменных резисторов R2 и R3 должны быть в правом (по схеме) положении. Сила тока, текущего через цепочку резисторов Rl - R3, не превышает 50 мкА, что практически не влияет на показания миллиамперметра. Резистор R4 ограничивает ток через миллиамперметр до 1 мА предотвращая тем самым зашкаливание его стрелки в случае пробоя коллекторного перехода транзистора.

Показания миллиамперметра менее 1 мА свидетельствуют об исправности коллекторного перехода, а при его пробое стрелка миллиамперметра всегда будет устанавливаться на крайнем правом делении шкалы. В случае же обрыва между выводами электродов коллектора и базы прибор будет показывать только ток, проходящий через резисторы Rl - R4.

Ток базы /б, равный 1 мА, устанавливают резисторами R3 Грубо и R2 Точно при нажатой кнопке SB2. При этом через миллиамперметр (рис. 2, б) течет незначительный начальный ток коллектора и ток через резисторы Rl - R3, который при измерении коэффициента h21э будет током базы Iб проверяемого транзистора.

Статический коэффициент передачи тока измеряют нажатием кнопки SB4 h21э 300 или, при малом численном значении этого параметра, кнопки SB3 h21э 60. При этом контакты кнопки подключают эмиттер транзистора к плюсовому (или минусовому, если транзистор структуры п-р-п) проводнику источника питания, а параллельно миллиамперметру - проволочный резистор R5 (или R6), расширяющий предел измерения (рис. 2, в). Коллекторный ток проверяемого транзистора будет приблизительно соответствовать его статическому коэффициенту передачи тока. Погрешность, возникающая из-за упрощения коммутации цепей прибора, не оказывает влияния на подбор пар транзисторов для выходных каскадов мощных усилителей ЗЧ.

При испытании транзисторов структуры п-р-п миллиамперметр включается в цепь его эмиттера,

Конструкция прибора произвольная. Резисторы R1 и R4 типа МЛТ-0,5, R2 и R3 - СП-3. Резисторы R5 и R6 изготовляют из провода с высоким удельным сопротивлением диаметром 0,4...0,5 мм. Переключатель SA1 - тумблер ТП1-2, кнопочные переключатели SB1 - SB4- КМ2-1. Индикатор включения питания HL1 - коммутаторная лампа КМ24-90 (24 Вх90 мА).

Подбором резистора R4 при замкнутых накоротко зажимах коллектора и базы и нажатой кнопке SB2 стрелку миллиамперметра возможно точнее устанавливают на крайнее правое деление шкалы.

Для подгонки сопротивлений резисторов R5 и R6 потребуются образцовый миллиамперметр на ток 300... 400 мА и переменны проволочные резисторы сопротивлением 51...62 и 240...300 Ом. Соединяют последовательно образцовый миллиамперметр, миллиамперметр испытателя транзисторов, резистор R5 и переменный резистор на 51....62 Ом. Включив источник питания, переменным резистором устанавливают в цепи ток, равный 300 мА, одновременно следя за тем, чтобы стрелка миллиамперметра прибора не зашкаливала. После этого подгонкой сопротивления резистора R5 стрелку миллиамперметра прибора устанавливают на крайнее правое деление шкалы. Затем переменный резистор заменяют резистором сопротивлением 240...300 Ом, резистор R5 - резистором-R6 и таким же способом устанавливают в цепи ток, равный 60 мА, а стрелку миллиамперметра прибора - на крайнюю правую отметку шкалы.

При нажатой кнопке SB4 отклонение стрелки миллиамперметра испытателя на всю шкалу соответствует статическому коэффициенту передачи тока транзистора 300, при нажатой кнопке SB3 - 60.