Что такое метрическая система. История создания метрической системы

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

  • Международная единица

Создание и развитие метрической системы мер

Метрическая система мер была создана в конце XVIII в. во Франции, когда развитие торговли промышленности настоятельно потребовало замены множества единиц длины и массы, выбранных произвольно, едиными, унифицированными единицами, какими и стали метр и килограмм.

Первоначально метр был определен как 1/40 000 000 часть Парижского меридиана, а килограмм - как масса 1 кубического дециметра воды при температуре 4 С, т.е. единицы были основаны на естественных эталонах. В этом заключалась одна из важнейших особенностей метрической систем, определившая ее прогрессивное значение. Вторым важным преимуществом являлось десятичное подразделение единиц, соответствующее принятой системе исчисления, и единый способ образования их наименований (включением в название соответствующей приставки: кило, гекто, дека, санти и милли), что избавляло от сложных преобразований одних единиц в другие и устраняло путаницу в названиях.

Метрическая система мер стала базой для унификации единиц во всем мире.

Однако в последующие годы метрическая система мер в первоначальном виде (м, кг, м, м. л. ар и шесть десятичных приставок) не могла удовлетворить запросы развивающейся науки и техники. Поэтому каждая отрасль знаний выбирала удобные для себя единицы и системы единиц. Так, в физике придерживались системы сантиметр - грамм - секунда (СГС); в технике нашла широкое распространение система с основными единицами: метр - килограмм-сила - секунда (МКГСС); в теоретической электротехнике стали одна за другой применяться несколько систем единиц, производных от системы СГС; в теплотехнике были принят системы, основанные, с одной стороны, на сантиметре, грамме и секунде, с другой стороны, - на метре, килограмме и секунде с добавлением единицы температуры - градуса Цельсия и внесистемных единиц количества теплоты - калории, килокалории и т.д. Кроме этого, нашли применение много других внесистемных единиц: например, единицы работы и энергии - киловатт-час и литр-атмосфера, единицы давления - миллиметр ртутного столба, миллиметр водяного столба, бар и т.д. В итоге образовалось значительное число метрических систем единиц, некоторые из них охватывали отдельные сравнительно узкие отрасли техники, и много внесистемных единиц, в основу определений которых были положены метрические единицы.

Одновременное их применение в отдельных областях привело к засорению многих расчетных формул числовыми коэффициентами, не равными единице, что сильно усложнило расчеты. Например, в технике стало обычным применение для измерения массы единицы системы МКС - килограмма, а для измерения силы единицы системы МКГСС - килограмм-силы. Это представлялось удобным с той точки зрения, что числовые значения массы (в килограммах) и ее веса, т.е. силы притяжения к Земле (в килограмм-силах) оказались равными (с точностью, достаточной для большинства практических случаев). Однако следствием приравнивания значений разнородных по существу величин было появление во многих формулах числового коэффициента 9,806 65 (округленно 9,81) и к смешению понятий массы и веса, которое породило множество недоразумений и ошибок.

Такое многообразие единиц и связанные с этим неудобства породили идею создания универсальной системы единиц физических величин для всех отраслей науки и техники, которая могла бы заменить все существующие системы и отдельные внесистемные единицы. В результате работ международных метрологических организаций такая система была разработана и получила название Международной системы единиц с сокращенным обозначением СИ (Система Интернациональная). СИ была принята ХI Генеральной конференцией по мерам и весам (ГКМВ) в 1960 г. как современная форма метрической системы.

Характеристика Международной системы единиц

Универсальность СИ обеспечивается тем, что семь основных единиц, положенных в ее основу, являются единицами физических величин, отражающих основные свойства материального мира и дают возможность образовывать производные единицы для любых физических величин во всех отраслях науки и техники. Этой же цели служат и дополнительные единицы, необходимые для образования производных единиц, зависящих от плоского и телесного углов. Преимуществом СИ перед другими системами единиц является принцип построения самой системы: СИ построена для некоторой системы физических величин, позволяющих представить физические явления в форме математических уравнений; некоторые из физических величин приняты основными и через них выражаются все остальные - производные физические величины. Для основных величин установлены единицы, размер которых согласован на международном уровне, а для остальных величин образуются производные единицы. Построенная таким образом система единиц и входящие в нее единицы называются когерентными, так как при этом выдержано условие, что соотношения между числовыми значениями величин, выраженными в единицах СИ, не содержат коэффициентов, отличных от входящих в первоначально выбранные уравнения, связывающие величины. Когерентность единиц СИ при их применении позволяет до минимума упростить расчетные формулы за счет освобождения их от переводных коэффициентов.

В СИ устранена множественность единиц для выражения величин одного и того же рода. Так, например, вместо большого числа единиц давления, применявшихся на практике, единицей давления в СИ является только одна единица - паскаль.

Установление для каждой физической величины своей единицы позволило разграничить понятие массы (единица СИ - килограмм) и силы (единица СИ - ньютон). Понятие массы следует использовать во всех случаях, когда имеется в виду свойство тела или вещества, характеризующее их инерционность и способность создавать гравитационное поле, понятие веса - в случаях, когда имеется в виду сила, возникающая вследствие взаимодействия с гравитационным полем.

Определение основных единиц. И возможно с высокой степенью точности, что в конечном счете не только позволяет повысить точность измерений, но и обеспечить их единство. Это достигается путем "материализации" единиц в виде эталонов и передачи от нх размеров рабочим средствам измерений с помощью комплекса образцовых средств измерений.

Международная система единиц благодаря своим преимуществам получила широкое распространение в мире. В настоящее время трудно назвать страну, которая бы не внедрила СИ, находилась бы на стадии внедрения или не приняла бы решения о внедрении СИ. Так, страны, ранее применявшие английскую систему мер (Англия, Австралия, Канада, США и др.) также приняли СИ.

Рассмотрим структуру построения Международной системы единиц. В табл.1.1 приведены основные и дополнительные единицы СИ.

Производные единицы СИ образуются из основных и дополнительных единиц. Производные единицы СИ, имеющие специальные наименования (табл.1.2), также могут быть использованы для образования других производных единиц СИ.

В связи с тем, что диапазон значений большинства измеряемых физических величин в настоящее время может быть весьма значительным и применять только единицы СИ неудобно, так как в результате измерения получаются слишком большие или малые числовые значения, в СИ предусмотрено применение десятичных кратных и дольных от единиц СИ, которые образуются с помощью множителей и приставок, приведенных в табл.1.3.

Международная единица

6 октября 1956 г. Международный комитет мер и весов рассмотрел рекомендацию комиссии по системе единиц и принял следующее важное решение, завершающее работу по установлению Международной системы единиц измерений:

"Международный комитет мер и весов, принимая во внимание задание, полученное от девятой Генеральной конференции по мерам и весам в ее резолюции 6, относительно установления практической системы единиц измерения, которая могла бы быть принята всеми странами, подписавшими Метрическую конвенцию; принимая во внимание все документы, полученные от 21 страны, ответивших на опрос, предложенный девятой Генеральной конференцией по мерам и весам; принимая во внимание резолюцию 6 девятой Генеральной конференции по мерам и весам, устанавливающую выбор основных единиц будущей системы, рекомендует:

1) чтобы называлась "Международной системой единиц" система, основанная на основных единицах, принятых десятой Генеральной конференцией и являющихся следующими;

2) чтобы применялись единицы этой системы, перечисленные в следующей таблице, не предопределяя другие единицы, могущие быть добавленные впоследствии".

На сессии в 1958 г. Международный комитет мер и весов обсудил и принял решение о символе для сокращенного обозначения наименования "Международная система единиц". Был принят символ, состоящий из двух букв SI (начальные буквы слов System International - международная система).

В октябре 1958 г. Международный комитет законодательной метрологии принял следующую резолюцию по вопросу о Международной системе единиц:

метрическая система мера вес

"Международный комитет законодательной метрологии, собравшись на пленарном заседании 7 октября 1958 г. в Париже, объявляет о присоединении к резолюции Международного комитета мер и весов об установлении международной системы единиц измерения (SI).

Основными единицами этой системы являются:

метр - килограмм-секунда-ампер-градус Кельвина-свеча.

В октябре 1960 г. вопрос о Международной системе единиц был рассмотрен на одиннадцатой Генеральной конференции по мерам и весам.

По этому вопросу конференция приняла следующую резолюцию:

"Одиннадцатая Генеральная конференция по мерам и весам, принимая во внимание резолюцию 6 десятой Генеральной конференции по мерам и весам, в которой она приняла шесть единиц в качестве базы для установления практической системы измерений для международных сношений принимая во внимание резолюцию 3, принятую Международным комитетом мер и весов в 1956 г., и принимая во внимание рекомендации, принятые Международным комитетом мер и весов в 1958 г., относящиеся к сокращенному наименованию системы и к приставкам для образования кратных и дольных единиц, решает:

1. Присвоить системе, основанной на шести основных единицах, наименование "Международная система единиц";

2. Установить международное сокращенное наименование этой системы "SI";

3. Образовывать наименования кратных и дольных единиц посредством следующих приставок:

4. Применять в этой системе нижеперечисленные единицы, не предрешая, какие другие единицы могут быть добавлены в будущем:

Принятие Международной системы единиц явилось важным прогрессивным актом, подытожившим большую многолетнюю подготовительную работу в этом направлении и обобщившим опыт научно-технических кругов разных стран и международных организаций по метрологии, стандартизации, физике и электротехнике.

Решения Генеральной конференции и Международного комитета мер и весов по Международной системе единиц учтены в рекомендациях Международной организации по стандартизации (ИСО) по единицам измерений и уже нашли свое отражение в законодательных положениях о единицах и в стандартах на единицы некоторых стран.

В 1958 г. в ГДР было утверждено новое Положение о единицах измерений, построенное на основе Международной системы единиц.

В 1960 г. в правительственном законоположении о единицах измерений Венгерской Народной Республики за основу принята Международная система единиц.

Государственные стандарты СССР на единиц 1955-1958 гг. были построены на основе системы единиц, принятой Международным комитетом мер и весов в качестве Международной системы единиц.

В 1961 г. Комитет стандартов, мер и измерительных приборов при Совете Министров СССР утвердил ГОСТ 9867 - 61 "Международная система единиц", в котором устанавливается предпочтительное применение этой системы во всех областях науки и техники и при преподавании.

В 1961 г. правительственным декретом узаконена Международная система единиц во Франции и в 1962 г. в Чехословакии.

Международная система единиц получила отражение в рекомендациях Международного союза чистой и прикладной физики, принята Международной электротехнической комиссией и рядом других международных организаций.

В 1964 г. Международная система единиц легла в основу "Таблицы единиц законного измерения" Демократической Республики Вьетнам.

В период 1962 по 1965 гг. в ряде стран были изданы законы о принятии Международной системы единиц в качестве обязательной или предпочтительной и стандарты на единицы СИ.

В 1965 г. в соответствии с поручением XII Генеральной конференции по мерам и весам Международное бюро мер и весов провело опрос относительно положения с принятием СИ в странах, присоединившихся к Метрической конвенции.

13 стран приняли СИ как обязательную или предпочтительную.

В 10 странах допущено применение Международной системы единиц и проводится подготовка к пересмотру законов с целью придания узаконенного, обязательного характера этой системе в данной стране.

В 7 странах СИ допущена как факультативная.

В конце 1962 г. вышла в свет новая рекомендация Международной комиссии по радиологическим единицам и измерениям (МКРЕ), посвященная величинам и единицам в области ионизирующих излучений. В отличие от предыдущих рекомендаций этой комиссии, которые в основном были посвящены специальным (внесистемным) единицам для измерений ионизирующих излучений, новая рекомендация включает таблицу, в которой на первом месте для всех величин поставлены единицы Международной системы.

На происходившей 14-16 октября 1964 г. седьмой сессии Международного комитета законодательной метрологии, в состав которого входили представители 34 стран, подписавших межправительственную конвенцию, учреждающую Международную организацию законодательной метрологии, была принята по вопросам внедрения СИ следующая резолюция:

"Международный комитет законодательной метрологии, принимая во внимание необходимость быстрого распространения Международной системы единиц СИ, рекомендует предпочтительное применение этих единиц СИ при всех измерениях и во всех измерительных лабораториях.

В частности, во временных международных рекомендациях. принятых и распространенных Международной конференцией законодательной метрологии, эти единицы должны применять предпочтительно для градуировки измерительных аппаратов и приборов, на которые распространяются эти рекомендации.

Иные единицы, применение которых разрешается этими рекомендациями, допускаются лишь временно, и их должны избегать насколько возможно скоро".

Международный комитет законодательной метрологии создал секретариат-докладчик по теме "Единицы измерений", задачей которого является разработка типового проекта законодательства по единицам измерений на основе Международной системы единиц. Ведение секретариата-докладчика по этой теме приняла на себя Австрия.

Преимущества Международной системы

Международная система универсальна. Она охватывает все области физических явлений, все отрасли техники и народного хозяйства. Международная система единиц органически включает в себя такие давно распространенные и глубоко укоренившиеся в технике частные системы, как метрическая система мер и система практических электрических и магнитных единиц (ампер, вольт, вебер и др.). Лишь система, в которую вошли эти единицы, могла претендовать на признание в качестве универсальной и международной.

Единицы Международной системы в большинстве достаточно удобны по своему размеру, а наиболее важные из них имеют удобные на практике собственные наименования.

Построение Международной системы отвечает современному уровню метрологии. Сюда относится оптимальный выбор основных единиц, и в частности их числа и размеров; согласованность (когерентность) производных единиц; рационализованная форма уравнений электромагнетизма; образование кратных и дольных единиц посредством десятичных приставок.

В результате различные физические величины обладают в Международной системе, как правило, и различной размерностью. Это делает возможным полноценный размерный анализ, предотвращая недоразумения, например, при контроле выкладок. Показатели размерности в СИ целочисленны, а не дробны, что упрощает выражение производных единиц через основные и вообще оперирование с размерностью. Коэффициенты 4п и 2п присутствуют в тех и только тех уравнениях электромагнетизма, которые относятся к полям со сферической или цилиндрической симметрией. Метод десятичных приставок, унаследованный от метрической системы, позволяет охватить огромные диапазоны изменения физических величин и обеспечивает соответствие СИ десятичной системе исчисления.

Международной системе присуща достаточная гибкость. Она допускает применение и некоторого числа внесистемных единиц.

СИ - живая и развивающаяся система. Число основных единиц может быть и еще увеличено, если это будет необходимо для охвата какой-либо дополнительной области явлений. В будущем не исключено также смягчение некоторых действующих в СИ регламентирующих правил.

Международная система, как говорит и само ее название, призвана стать повсеместно применяемой единственной системой единиц физических величин. Унификация единиц представляет давно назревшую необходимость. Уже сейчас СИ сделала ненужными многочисленные системы единиц.

Международная система единиц принята более чем в 130 странах мира.

Международная система единиц признана многими влиятельными международными организациями, включая Организацию Объединенных Наций по вопросам образования, науки и культуры (ЮНЕСКО). Среди признавших СИ - Международная организация по стандартизации (ИСО), Международная организация законодательной метрологии (МОЗМ), Международная Электротехническая комиссия (МЭК), Международный союз чистой и прикладной физики и др.

Список используемой литературы

1. Бурдун, Власов А.Д., Мурин Б.П. Единицы физических величин в науке и технике, 1990

2. Ершов В.С. Внедрение Международной системы единиц, 1986.

3. Камке Д, Кремер К. Физические основы единиц измерения, 1980.

4. Новосильцев. К истории основных единиц СИ, 1975.

5. Чертов А.Г. Физические величины (Терминология, определения, обозначения, размерности), 1990.

Размещено на Allbest.ru

Подобные документы

    История создания международной системы единиц СИ. Характеристика семи основных единиц, ее составляющих. Значение эталонных мер и условия их хранения. Приставки, их обозначение и значение. Особенности применения системы СМ в международных масштабах.

    презентация , добавлен 15.12.2013

    История единиц измерения во Франции, их происхождение от римской системы. Французская имперская система единиц, распространенное злоупотребление стандартами короля. Правовая основа метрической системы, полученная в революционной Франции (1795-1812).

    презентация , добавлен 06.12.2015

    Принцип построения систем единиц физических величин Гаусса, базирующийся на метрической системе мер с отличающимися друг от друга основными единицами. Диапазон измерения физической величины, возможности и методы ее измерения и их характеристика.

    реферат , добавлен 31.10.2013

    Предмет и основные задачи теоретический, прикладной и законодательной метрологии. Исторически важные этапы в развитии науки об измерениях. Характеристика международной системы единиц физических величин. Деятельность Международного комитета мер и весов.

    реферат , добавлен 06.10.2013

    Анализ и определение теоретических аспектов физических измерений. История внедрения эталонов международной метрической системы СИ. Механические, геометрические, реологические и поверхностные единицы измерения, области их применения в полиграфии.

    реферат , добавлен 27.11.2013

    Семь основных системных величин в системе величин, которая определяется Международной системой единиц СИ и принята в России. Математические операции с приближенными числами. Характеристика и классификация научных экспериментов, средств их проведения.

    презентация , добавлен 09.12.2013

    История развития стандартизации. Внедрение российских национальных стандартов и требований к качеству продукции. Декрет "О введении международной метрической системы мер и весов". Иерархические уровни управления качеством и показатели качества продукции.

    реферат , добавлен 13.10.2008

    Правовые основы метрологического обеспечения единства измерений. Система эталонов единиц физической величины. Государственные службы по метрологии и стандартизации в РФ. Деятельность федерального агентства по техническому регулированию и метрологии.

    курсовая работа , добавлен 06.04.2015

    Измерения на Руси. Меры измерения жидкости, сыпучих веществ, единицы массы, денежные единицы. Применение правильных и клейменых мер, весов и гирь всеми торговцами. Создание эталонов для торговли с иностранными государствами. Первый прототип эталона метра.

    презентация , добавлен 15.12.2013

    Метрология в современном понимании – наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности. Физические величины и международная система единиц. Систематические, прогрессирующие и случайные погрешности.

Большое число и раздробленность применяемых мер стесняли торговые, экономические и культурные связи между странами и вызывало путаницу и злоупотребления внутри отдельных государств. Развитие промышленного производства, расширение экономических связей, развитие торговли и обмена привело к идее создания единой системы мер, общей для всех стран мира.

Основными в поисках новой системы являлись следующие положения:

· естественное происхождение мер (новые единицы мер должны быть взяты из природы);

· определенность мер;

· независимость мер от времени и случайностей;

· неизменность и постоянство мер;

· восстанавливаемость в случае утраты;

· общность системы мер;

· удобство взаимосвязи единиц мер в данной системе;

· десятичный принцип отношений мер друг к другу.

Система мер, отвечающая всем вышеперечисленным требованиям, была предложена Парижской Академией Наук, которая рекомендовала принять в качестве основной единицы – метр, равный одной сорокамиллионной части дуги земного меридиана, проходящего через Париж. Учредительное собрание Франции 26 марта 1791 года утвердило предложение Парижской Академии Наук, а в 1799 работа по экспериментальному определению длины и массы завершилась передачей их платиновых прототипов на хранение Архиву Франции.

В соответствии с данной системой за единицу длины был принят метр, единицу площади метр квадратный, единицу объема – метр кубический (стер), единицу массы – килограмм, равный массе чистой воды одного кубического дециметра при температуре 4 0 С. Мерой поверхности был утвержден ар (от слова «арос» – пахать), равный квадрату со стороной 10 м, а в качестве меры объема для жидких и сыпучих тел – литр, равный объему жидкости одного кубического дециметра. Все остальные единицы устанавливались при помощи коэффициента 10, а их наименование образовывалось за счет добавления дольных приставок (древнегреческих и латинских числительных) к основным единицам.

Метрическая система мер изначально задумывалась как международная. Ее единицы не совпадали ни с какими национальными, а наименование единиц и дольных приставок были образованы от «мертвых» языков. Закон, принятый Наполеоном 10 декабря 1799 года в статье 4 утверждал: « Будет изготовлена медаль, чтобы передать памяти потомства время, когда система мер была доведена до совершенства, и операцию, которая послужила ей основой. Надпись на лицевой стороне медали будет: «На все времена, для всех народов» . Сама медаль так и не была выпущена, появились другие, более совершенные системы мер, а девиз медали история сохранила.

Несмотря на свое очевидное преимущество, метрическая система мер внедрялась с большим трудом. Даже в самой Франции, где феодалы имели право пользоваться своими собственными мерами, метрическая система была окончательно введена лишь в 1840 году.



20 мая 1875 года по предложению Петербургской Академии Наук была созвана дипломатическая конференция, на которой 17 государств, в том числе Россия подписали Метрическую конвенцию, к которой позднее присоединилась еще 41 страна мира. В этом же году были созданы Международная организация мер и весов (МОМВ) и Международное бюро мер и весов (МБМВ), расположенные во французском городе Севр. В 1889 году России были переданы на хранение эталоны единицы массы под номерами 12 и 26 и эталоны единицы длины под номерами 11 и 28.

Метрическая система, как единственная, окончательно была введена в России в 1927 году. В стране, где грамотность была очень низкой, а разнообразие мер и их наименований, в силу обширности территории, огромно, внедрение данной системы предполагало повсеместную пропаганду и обучение. Так в «Руководстве к изучению метрической системы мер и весов» службы просвещения Омской железной дороги от 1924 года говорится: «Всякий грамотный человек должен, прежде всего, уметь читать, писать и считать. Согласно указанию Учебного отдела НКПС для малоподготовленных агентов в программу курсов должна входить…. история происхождения метрической системы и практические занятия, с целью дать слушателям навык по пользованию метрической системой. В настоящее время имеются…. единицы, которые без всякой системы связаны друг с другом, а у некоторых, например аршин и фут, никакой связи нет. И так, мы имеем 27 употребляемых единиц измерения различного наименования (утвержденных на данный период в Омской области – мои пояснения) и все оне очень неудобно связаны друг с другом, или часто вовсе не имеют никакой связи между собой. Кроме того, не так то легко держать их все в памяти, и затем всякие арифметические действия над именованными числами, выраженными в этих единицах, весьма затруднительны и требуют большого внимания и значительной затраты времени. Когда же появилась эта новая система, все культурные государства перешли на нее, за исключением Англии, по причине крайней консервативности ее населения и Северо-Американских Соединенных Штатов».

Прошло почти столетие, а Великобритания и США наряду с метрической системой, употребляемой в основном в науке, до сих пор пользуются своими национальными системами мер, что создает путаницу и неудобство, в первую очередь, в самих странах. Так, например, мера зерна – бушель – в настоящее время имеет 56 разных значений. С 1 января 2000 года правительство Англии обязало граждан страны пользоваться метрической системой, угрожая «отказникам» денежными штрафами. Однако, «не смотря на законодательное предписание, около одной трети из шестидесяти тысяч магазинов в Великобритании не перестроились на метрическую систему. Приспособление к континентальной системе идет уже с 1969 года, когда для начала на десятичную систему были переведены фунты, шилинги и пессы» .

В настоящее время метрология как наука, пройдя свой описательный период, динамично развивается. Расширение международных отношений в области науки, торговли и производства привело к усилению роли Межгосударственных организаций по метрологии. Международная Организация Законодательной Метрологии (МОЗМ) была создана в 1955 году и объединяет 83 государства. До сих пор не прекращает своей работы старейшая и наиболее представительная международная метрологическая организация – МОМВ. В 1988 году подписана конвенция об образовании ЕВРОМЕТ – общеевропейской метрологической организации.

Рис. 148. Изготовление блокировочного конденсатора, а – собранные листики фольги и бумаги; ниже вид взаимного расположения листиков фольги; b – концы листиков фольги загнуты наружу;

с – обойма из листовой латуни для зажимания концов фольги; d – готовый конденсатор

3. ТАБЛИЦЫ ПЕРЕВОДА МЕР РАЗЛИЧНЫХ СИСТЕМ

Как мы уже говорили ранее, в нашем изложении мы старались придерживаться ныне принятой у нас метрической системы мер. Однако, в тех случаях, где в продаже тех или иных сортов материалов до сих пор не вышли из употребления старые русские или английские меры, мы давали данные и по этим мерам.

На случай, если кому-либо из читателей придется все же переводить метрические меры в русские или же, при более полном установлении у нас метрической системы, помещенные в тексте старые меры – в метрические, нами даются нижеследующие таблицы, охватывающие все данные, встречающиеся в предыдущих главах.

Сравнение метрических и русских мер

А. Сравнение метрических и русских мер.

километра

километр

0,7112 метра

44,45 миллиметра

сотая саж.

миллиметра

46,87 соток

30,48 сантиметров

2,54 сантиметра

кв. верста

кв километра

кв. километр

кв. версты

кв. метров

кв. аршин

кв. метра

19,7580 кв. сантиметров

929,013 кв. сантиметров

кв. сантиметров

0,155 кв. дюйм

десятина

гектаров

десятины

2197 кв. саж.

В 1795 году во Франции был принят Закон о новых мерах и весах, который установил единую единицу длины - метр , равный десятимиллионной части четверти дуги меридиана, проходящего через Париж. Отсюда идет и название системы - метрическая.

В качестве эталона метра был избран платиновый стержень длиной один метр и очень странной формы. Теперь размер всех линеек, длиной один метр, должны были соответствовать этому эталону.

Были установлены единицы:

- литр как мера вместимости жидких и сыпучих тел, равная 1000 куб. сантиметров и вмещающая 1 кг воды (при 4° тепла по Цельсию),

- грамм как единица веса (вес чистой воды при температуре 4 градуса Цельсия в объеме куба с ребром 0,01 м),

- ар как единица площади (площадь квадрата со стороной 10 м),

- секунда как единица времени (1/86400 часть средних солнечных суток).

Позднее основной единицей массы стал килограмм . Прототипом этой единицы служила платиновая гиря, которую положили под стеклянные колбы и откачали воздух - чтобы пыль не попадала и вес не увеличивала!

Прототипы метра и килограмма и сегодня хранятся в Национальном Архиве Франции и называются "метр Архива" и "килограмм Архива" соответственно.

Разные меры были и раньше, но важным достоинством Метрической системы мер была ее десятичность, так как дольные и кратные единицы, согласно принятым правилам, образовывались в соответствии с десятичным счетом с помощью десятичных множителей, которым соответствуют приставки деци,- санти,- милли,- дека,- гекто- и кило-.

В настоящее время метрическая система мер принята в России и в большинстве стран мира. Но существуют и другие системы. Например, английская система мер, в которой за основные единицы приняты фут, фунт и секунда.

Интересно, что во всех странах есть привычные упаковки для разных продуктов и напитков. В России, например, молоко и соки обычно фасуют в литровые пакеты. А большие стеклянные банки - сплошь трёхлитровые!


Запомни: на профессиональных чертежах габариты (размеры) изделий подписывают в миллиметрах. Даже если это очень большие изделия, вроде машин!


Фольксваген "Кади".


Ситроен "Берлинго".


Феррари-360.

Назад

История создания метрической системы



Как известно, метрическая система зародилась во Франции в конце XVIII столетия. Многообразие мер и весов, стандарты которых порой значительно отличались в разных регионах страны, зачастую приводило к путанице и конфликтам. Таким образом, остро назрела необходимость реформировать действующую систему измерений или же разработать новую, взяв за основу простой и универсальный стандарт. В 1790 году на обсуждение в Национальное собрание был представлен проект небезызвестного князя Талейрана, впоследствии ставшего министром иностранных дел Франции. В качестве эталона длины деятель предложил принять длину секундного маятника на широте 45°.

К слову, идея с маятником была на тот момент уже не нова. Еще в XVII веке ученые делали попытки определить универсальные измерители на основе реальных предметов, сохранявших постоянную величину. Одно их таких исследований принадлежало голландскому ученому Христиану Гюйгенсу, проводившему опыты с секундным маятником и доказавшему, что его длина зависит от широты места, где проводился эксперимент. Еще за столетие до Талейрана на основании собственных опытов Гюйгенс предложил в качестве всемирного эталона длины применить 1/3 длину маятника с периодом колебаний 1 секунда, что приблизительно составляло 8 см.

И все же, предложение вычислить эталон длины на показаниях секундного маятника не нашло поддержки в Академии наук, а в основу будущей реформы легли идеи астронома Мутона, который рассчитывал единицу длины от дуги земного меридиана. Ему же принадлежало предложение создать новую систему измерений на десятичной основе.

В своем проекте Талейран подробно изложил порядок определения и введения единого стандарта длины. Во-первых, предполагалось со всех уголков страны собрать всевозможные меры и привезти в Париж. Во-вторых, Национальному собранию предстояло связаться с Британским парламентом с предложением создания международной комиссии из ведущих ученых обеих стран. После проведения эксперимента Французская академия наук должна была установить точное соотношение между новой единицей длины и мерами, которые ранее применялись в различных уголках страны. Копии эталонов и сравнительные таблицы со старыми мерами необходимо было разослать во все регионы Франции. Данный регламент был одобрен Национальным собранием, а 22 августа 1790 года его утвердил король Людовик XVI.

Работы по определению метра начались в 1792 году. Руководителями экспедиции, которой было поручено измерить дугу меридиана между Барселоной и Дюнкерком, были назначены французские ученые Мешен и Деламбр. Работа французских ученых была рассчитана на несколько лет. Однако в 1793 году Академия наук, проводившая реформу, была упразднена, что вызвало серьезную задержку и без того непростого трудоемкого исследования. Было принято решение не ждать окончательных результатов по измерению дуги меридиана и рассчитать дину метра на основе уже имеющихся данных. Так в 1795 году был определен временный метр как 1/10000000 часть парижского меридиана между экватором и северным полюсом. Работы по уточнению метра были завершены к осени 1798 года. Новый метр оказался короче на 0,486 линии или 0,04 французского дюйма. Именно это значение легло в основу нового эталона, узаконенного 10 декабря 1799 года.

Одним из основных положений метрической системы является зависимость всех мер от единого линейного стандарта (метра). Так, например, при определении основной единицы веса — — было решено взять за основу кубический сантиметр чистой воды.

К концу XIX века почти во всей Европе, за исключением Греции и Англии, была принята метрическая система. Быстрому распространению этой уникальной системы мер, которой мы пользуемся и поныне, способствовали простота, единство и точность. Несмотря на все преимущества метрической системы Россия на рубеже XIX - XX столетий так и не решилась присоединиться к большинству европейских стран, уже тогда сломав вековые привычки народа и отказавшись от использования традиционной русской системы мер. Впрочем, «Положение о весах и мерах» от 4 июня 1899 года официально допускало применение килограмма наряду с русским фунтом. Окончательный же измерений завершился лишь к началу 1930-х годов.