Популяции. Нарушения равновесного состояния популяций: мутации, естественный отбор, миграции, изоляция Способность популяции приспосабливаться к новым факторам

1. Что такое естественный отбор?

Ответ. Естественный отбор - процесс, изначально определённый Чарльзом Дарвином как приводящий к выживанию и преимущественному размножению более приспособленных к данным условиям среды особей, обладающих полезными наследственными признаками. В соответствии с теорией Дарвина и современной синтетической теорией эволюции, основным материалом для естественного отбора служат случайные наследственные изменения - рекомбинация генотипов, мутации и их комбинации.

2. Что такое генотип?

Ответ. Термин "генотип" был введен в науку Иогансоном в 1909 г. Генотип (genotype, от греч. genos - род и typos - отпечаток, форма, образец) - совокупность генов организма, в более широком смысле - совокупность всех наследственных факторов организма, как ядерных, так и неядерных. Сочетание уникальных геномов (наборов), полученных от каждого из родителей, создает генотип, лежащий в основе генетической индивидуальности. Понятия генотип и фенотип - очень важные в биологии. Как сказано выше, совокупность всех генов организма составляет его генотип. Совокупность всех признаков организма (морфологических, анатомических, функциональных и др.) составляет фенотип. На протяжении жизни организма его фенотип может изменяться, однако генотип при этом остается неизменным. Это объясняется тем, что фенотип формируется под влиянием генотипа и условий среды. Слово генотип имеет два смысла. В широком смысле - это совокупность всех генов данного организма. Но применительно к опытам того типа, которые ставил Мендель, словом генотип обозначают сочетание аллелей, которые контролируют данный признак (например, организмы могут иметь генотип AA, Aа или аа).

Таким образом, генотип - это: - характерная для данного индивидуума вся совокупность генетических (геномных) характеристик и характеристика определенных пар аллелей, которые индивидуум имеет в исследуемом районе генома.

Вопросы после § 55

1. Что такое генофонд популяции?

Ответ. Каждая популяция характеризуется определённым генофондом, т. е. совокупным количеством генетического материала, который слагается из генотипов отдельных особей.

Необходимыми предпосылками эволюционного процесса являются возникновение элементарных изменений аппарата наследственности – мутаций, их распространение и закрепление в генофондах популяций организмов. Направленные изменения генофондов популяций под воздействием различных факторов представляют собой элементарные эволюционные изменения.

Как уже отмечалось, природные популяции в разных частях ареала вида обычно более или менее различны. Внутри каждой популяции имеет место свободное скрещивание особей. В результате каждая популяция характеризуется собственным генофондом с присущими только данной популяции соотношениями различных аллелей.

2. Почему большая часть мутаций не проявляется внешне?

Ответ. Природные популяции насыщены самыми разнообразными мутациями. На это обратил внимание русский учёный Сергей Сергеевич Четвериков (1880–1959), который установил, что значительная часть изменчивости генофонда скрыта от глаз, так как подавляющее большинство возникающих мутаций рецессивны и не проявляются внешне. Рецессивные мутации как бы «впитываются видом в гетерозиготном состоянии», ведь большинство организмов гетерозиготно по многим генам. Подобную скрытую изменчивость можно выявить в экспериментах со скрещиванием близкородственных особей. При таком скрещивании некоторые рецессивные аллели, находившиеся в гетерозиготном и потому скрытом состоянии, перейдут в гомозиготное состояние и смогут проявиться. Значительная генетическая изменчивость природных популяций легко обнаруживается и в ходе искусственного отбора. При искусственном отборе из популяции выбирают тех особей, у которых какие-либо ценные в хозяйственном отношении признаки выражены наиболее сильно, и скрещивают этих особей между собой. Искусственный отбор оказывается эффективным почти во всех случаях, когда к нему прибегают. Следовательно, в популяциях имеется генетическая изменчивость буквально по каждому признаку данного организма.

3. В чём кроется способность популяции адаптироваться (приспосабливаться) к новым условиям?

Ответ. Поскольку всякая популяция обычно хорошо приспособлена к своей среде обитания, крупные изменения обычно снижают эту приспособленность, подобно тому как значительные случайные изменения в механизме часов (удаление какой-нибудь пружины или добавление колёсика) ведут к сбою в их работе. В популяциях имеются большие запасы таких аллелей, которые не приносят ей какой-либо пользы в данном месте или в данное время; они сохраняются в популяции в гетерозиготном состоянии, пока в результате изменения условий среды вдруг не окажутся полезными. Как только это случается, их частота под действием отбора начинает возрастать, и в конечном счёте они становятся основным генетическим материалом. Именно в этом кроется способность популяции адаптироваться, т. е. приспосабливаться к новым факторам – изменениям климата, появлению нового хищника или конкурента и даже к загрязнению среды человеком.

Примером подобной адаптации служит эволюция видов насекомых, устойчивых к инсектицидам. События во всех случаях развиваются одинаково: при введении в практику нового инсектицида (яда, действующего на насекомых) для успешной борьбы с насекомым-вредителем бывает достаточно небольшого его количества. С течением времени концентрацию инсектицида приходится повышать, пока, наконец, он не оказывается недейственным. Первое сообщение об устойчивости насекомого к инсектициду появилось в 1947 г. и относилось к устойчивости комнатной мухи к ДДТ. Впоследствии устойчивость к одному или нескольким инсектицидам была обнаружена не менее чем у 225 видов насекомых и других членистоногих. Гены, способные обеспечить устойчивость к инсектицидам, очевидно, имелись в каждой из популяций этих видов; их действие и обеспечило в конечном итоге снижение эффективности ядов, использованных для борьбы с вредителями

4. Каким способом можно выявить рецессивные аллели?

Ответ. Рецессивный аллель (recessive allele, от лат. recessus - отступление) - аллель, фенотип которого не проявляется в гетерозиготах, но проявляется при гомозиготном или гемизиготном генотипе по этому аллелю. Если рецессивные аллели находятся в гомозиготном состоянии, то они проявятся в фенотипе. Если надо узнать, присутствуют ли они в генотипе организма с доминантным фенотипом, то применяют анализирующее скрещивание. Для этого скрещивают проверяемый организм с носителем рецессивного фенотипа. Если в потомстве будут рецессивные особи, значит проверяемый организм - носитель рецессивного гена.

К числу факторов генетической динамики популяции, нарушающих ее равновесное состояние, относятся: мутационный процесс, отбор, генетический дрейф, миграции, изоляция.

Мутации и естественный отбор

В каждом поколении генофонд популяции пополняется вновь возникающими мутациями . Среди них могут быть как абсолютно новые изменения, так и уже имеющиеся в популяции мутации. Этот процесс называют мутационным давлением. Величина мутационного давления зависит от степени мутабильности отдельных генов, от соотношения прямых и обратных мутаций, от эффективности системы репарации, от наличия в среде мутагенных факторов. Кроме того, на величине мутационного давления сказывается то, в какой мере мутация влияет на жизнеспособность и плодовитость особи.

Исследования показывают, что природные популяции насыщены мутантными генами, которые в основном находятся в гетерозиготном состоянии. Мутационный процесс создает первичную генетическую изменчивость популяции, с которой далее предстоит действовать естественному отбору . В случае смены внешних условий и изменения направления отбора резерв мутаций позволяет популяции в короткие сроки адаптироваться к новой ситуации.

Эффективность отбора зависит от того, является ли мутантный признак доминантным или рецессивным. Очищение популяции от особей с вредной доминантной мутацией может быть достигнуто за одно поколение, если ее носитель не оставляет после себя потомства. В то же время вредные рецессивные мутации ускользают от действия отбора, если они находятся в гетерозиготном состоянии, и особенно в тех случаях, когда отбор действует в пользу гетерозигот. Последние часто имеют селективное преимущество перед гомозиготными генотипами за счет более широкой нормы реакции, которая повышает адаптационный потенциал их обладателей. При сохранении и размножении гетерозигот одновременно увеличивается вероятность выщепления рецессивных гомозигот. Отбор в пользу гетерозигот носит название уравновешивающего .

Ярким примером этой формы отбора может служить ситуация с наследованием серповидно-клеточной анемии. Эта болезнь широко распространена в некоторых районах Африки. Она вызвана мутацией гена, кодирующего синтез b-цепи гемоглобина, при которой происходит замена одной аминокислоты (валин) на другую (глютамин). Гомозиготы по этой мутации страдают тяжелой формой малокровия, почти всегда приводящей к гибели в раннем возрасте. Эритроциты таких людей имеют форму серпа. Гетерозиготность по этой мутации не ведет к малокровию. Эритроциты у гетерозигот имеют нормальную форму, но содержат 60% нормального и 40% измененного гемоглобина. Это говорит о том, что у гетерозигот функционируют оба аллеля — нормальный и мутантный. Поскольку гомозиготы по мутантному аллелю полностью устраняются из воспроизводства, то следовало бы ожидать снижения частоты вредного гена в популяции. Однако в некоторых африканских племенах доля гетерозигот по этому гену составляет 30-40%. Причина этой ситуации заключается в том, что люди, имеющие гетерозиготный генотип, менее подвержены заражению тропической лихорадкой, вызывающей высокую смертность в этих районах, по сравнению с нормой. В связи с этим отбор сохраняет оба генотипа: нормальный (доминантная гомозигота) и гетерозиготный. Воспроизведение из поколения в поколение двух разных генотипических классов особей в популяции обозначается как сбалансированный полиморфизм. Он имеет адаптивное значение.

Существуют и другие формы естественного отбора. Стабилизирующий отбор сохраняет норму, как наиболее отвечающий сложившимся условиям вариант генотипа, устраняя возникающие уклонения от нее. Эта форма отбора обычно действует в том случае, когда популяция длительное время находится в относительно стабильных условиях существования. В противоположность этому, движущий отбор сохраняет новый признак, если возникающая мутация оказывается полезной и дает ее носителям какое-либо преимущество. Отбор дизруптивный (разрывающий) действует одновременно в двух направлениях, сохраняя крайние варианты развития признака. Типичный пример этой формы отбора привел Ч. Дарвин. Он касается сохранения на островах двух форм насекомых: крылатых и бескрылых, которые обитают с разных сторон острова — подветренной и безветренной.

Основной результат деятельности естественного отбора сводится к увеличению числа особей с признаками, в направлении которых идет отбор. Одновременно отбираются также сцепленные с ними признаки и признаки, находящиеся с первыми в коррелятивных взаимоотношениях. По генам, которые контролируют признаки, не затрагиваемые отбором, популяция может длительное время находиться в состоянии равновесия, и распределение генотипов по ним будет близко к формуле Харди-Вайнберга.

Естественный отбор действует широко и затрагивает одновременно многие стороны жизнедеятельности организма. Он направлен на сохранение полезных для организма признаков, которые повышают его адаптивность и дают преимущество перед другими организмами. В отличие от этого, действие искусственного отбора, который имеет место в популяциях культурных растений и домашних животных, является более узким и чаще всего затрагивает признаки, которые полезны для человека, а не для их носителей.

Генетический дрейф

Большое влияние на генотипическую структуру популяций оказывает действие случайных причин. К их числу относятся: колебания численности популяции, возрастной и половой состав популяций, качество и количество пищевых ресурсов, наличие или отсутствие конкуренции, случайный характер выборки, дающей начало следующему поколению и др. Изменение частот генов в популяции по случайным причинам американский генетик С. Райт назвал генетическим дрейфом , а Н.П. Дубинин — генетико-автоматическим процессом. Особенно заметный эффект на генетическую структуру популяций оказывают резкие колебания численности популяции — популяционные волны , или волны жизни. Установлено, что в малочисленных популяциях динамические процессы протекают значительно более интенсивно, и при этом увеличивается роль случайности в накоплении отдельных генотипов. При сокращении численности популяции в ней могут случайно сохраняться одни мутантные гены, а другие так же случайно элиминироваться. При последующем увеличении численности популяции число этих сохранившихся генов может быстро возрастать. Скорость дрейфа обратно пропорциональна размеру популяции. В момент снижения численности дрейф идет особенно интенсивно. При очень резком сокращении численности популяции может возникнуть угроза ее вымирания. Это так называемая ситуация “бутылочного горлышка”. Если популяции удастся выжить, то в результате дрейфа генов произойдет изменение их частот, что отразится на структуре нового поколения.

Генетико-автоматические процессы особенно отчетливо протекают в изолятах, когда группа особей выделяется из большой популяции и образует новое поселение. Таких примеров много в генетике популяций человека. Так, в штате Пенсильвания (США) живет секта меннонитов, насчитывающая несколько тысяч человек. Браки здесь допускаются только между членами секты. Начало изоляту положили три супружеские пары, поселившиеся в Америке в конце XVIII в. Для этой группы людей характерна необычайно высокая концентрация плейотропного гена, который в гомозиготном состоянии обусловливает особую форму карликовости с полидактилией. Около 13% членов этой секты гетерозиготны по этой редкой мутации. Вероятно, что здесь имел место “эффект родоначальника”: случайно один из основателей секты был гетерозиготным по этому гену, а близкородственные браки способствовали распространению этой аномалии. В других группах меннонитов, разбросанных по территории США, такого заболевания не обнаружено.

Миграции

Еще одной причиной изменения частот генов в популяции являются миграции . Во время перемещения групп особей и скрещивания их с членами другой популяции осуществляется перенос генов из одной популяции в другую. Эффект миграции зависит от размера группы мигрантов и различия в частотах генов между обменивающимися популяциями. Если исходные частоты генов в популяциях сильно различаются, то может произойти существенный сдвиг частот. По мере прохождения миграций идет выравнивание генетических различий между популяциями. Конечным результатом давления миграций служит установление по всей системе популяций, между которыми идет обмен особями, некоторой средней концентрации для каждой мутации.

Примером роли миграций может служить распределение генов, определяющих у человека группы крови системы АВ0 . Для Европы характерно преобладание группы А , для Азии — группы В . Причина различий, как считают генетики, кроется в крупных миграциях населения, происходивших с Востока на Запад в период от 500 до 1500 гг. нашей эры.

Изоляция

Если особи одной популяции полностью или частично не скрещиваются с особями других популяций, такая популяция испытывает процесс изоляции . Если разобщение наблюдается на протяжении ряда поколений, а отбор действует в разном направлении в разных популяциях, то происходит процесс дифференциации популяций. Процесс изоляции действует как на внутрипопуляционном, так и на межпопуляционном уровне.

Различают два основных типа изоляции: пространственная , или механическая, изоляция и биологическая изоляция. Первый тип изоляции возникает либо под воздействием природных географических факторов (горообразование; возникновение рек, озер и других водоемов; извержение вулкана и др.), либо в результате деятельности человека (распашка земель, осушение болот, лесопосадки и пр.). Одно из следствий пространственной изоляции — образование прерывистого ареала вида, который характерен, в частности, для голубой сороки, соболя, травяной лягушки, осоки, обыкновенного вьюна.

Биологическая изоляция подразделяется на морфо-физиологическую, экологическую, этологическую и генетическую. Все эти виды изоляции характеризуются возникновением репродуктивных барьеров, ограничивающих или исключающих свободное скрещивание.

Морфо-физиологическая изоляция возникает, в основном, на уровне репродуктивных процессов. У животных она часто связана с различиями в строении копулятивных органов, что особенно характерно для насекомых и некоторых грызунов. У растений существенную роль играют такие признаки, как размер пыльцевого зерна, длина пыльцевой трубки, совпадение сроков созревания пыльцы и рылец.

При этологической изоляции у животных препятствием служат различия в поведении особей в репродуктивный период, например, наблюдается безуспешное ухаживание самца за самкой.

Экологическая изоляция может проявляться в разных формах: в предпочтении определенной репродуктивной территории, в разных сроках созревания половых клеток, скорости размножения и др. Например, у морских рыб, мигрирующих для размножения в реки, в каждой реке складывается особая популяция. Представители этих популяций могут различаться по величине, окраске, времени наступления половой зрелости и другим признакам, имеющим отношение к процессу репродукции.

Генетическая изоляция включает разные механизмы. Чаще всего она возникает из-за нарушений нормального течения мейоза и образования нежизнеспособных гамет. Причинами нарушений могут быть полиплоидия, хромосомные перестройки, ядерно-плазменная несовместимость. Каждое из этих явлений может приводить к ограничению панмиксии и бесплодию гибридов, а следовательно, к ограничению процесса свободного комбинирования генов.

Изоляция редко создается каким-то одним механизмом. Обычно одновременно имеют место несколько разных форм изоляции. Они могут действовать как на стадии, предшествующей оплодотворению, так и после него. В последнем случае система изоляции является менее экономичной, т.к. впустую тратится значительное количество энергетических ресурсов, например, на производство стерильного потомства.

Перечисленные факторы генетической динамики популяций могут действовать поодиночке и совместно. В последнем случае может наблюдаться либо кумулятивный эффект (например, мутационный процесс + отбор), либо действие одного фактора может снизить эффективность действия другого (например, появление мигрантов может снизить эффект от дрейфа генов).

Изучение динамических процессов в популяциях позволило С.С. Четверикову (1928) сформулировать идею генетического гомеостаза . Под генетическим гомеостазом он понимал равновесное состояние популяции, ее способность сохранять свою генотипическую структуру в ответ на действие факторов внешней среды. Основным механизмом поддержания равновесного состояния является свободное скрещивание особей, в самих условиях которого, по словам Четверикова, заложен аппарат стабилизации численных соотношений аллелей.

Рассмотренные нами генетические процессы, протекающие на уровне популяций, создают основу для эволюции более крупных систематических групп: видов, родов, семейств, т.е. для макроэволюции . Механизмы микро- и макроэволюции во многом сходны, различным является только масштаб происходящих изменений.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

План-конспект урока по биологии

Тема: Генетический состав популяций

генетика мутационный наследственный популяция

Вид урока: урок, раскрывающий содержание темы.

Цель урока: продолжать углублять и расширять знания о популяциях, охарактеризовать понятие генофонда популяций.

Задачи:

Образовательная. Сформировать понятие о популяционной генетике; дать характеристику генофонда популяции; выяснить, что мутационный процесс - постоянный источник наследственной изменчивости.

Развивающая. Продолжать формировать умения наблюдать и отмечать главное при прослушивании сообщений, работе с материалом учебника.

Воспитательная. Продолжать формировать научное мировоззрение, любовь к природе, культуру труда на основе ведения записей в тетради.

Оборудование

Таблицы, учебник.

Ход урока

1. Организационный момент 1-2 мин. Опрос домашнего задания: 1) Что такое популяция? 2) Почему биологические виды существуют в форме популяций? 5-7 мин.

2. Изучение нового материала. 25 мин.

3. Закрепление изученного материала. Выставление оценок.

4. Домашнее задание.

2. Изучение нового материала

Закрепление изученного материала

4. Домашнее задание

Популяционная генетика . Во времена Дарвина науки генетики еще не существовало. Она начала развиваться в начале XX в. Стало известно, что носителями наследственной изменчивости являются гены.

Представления генетики внесли дополнительные глубинные объяснения в теорию естественного отбора Ч. Дарвина. Синтез генетики и классического дарвинизма привел к рождению особого направления исследований - популяционной генетики, которое позволило с новых позиций объяснить процессы изменения генетического состава популяций, возникновения новых свойств организмов и их закрепление под воздействием естественного отбора.

Генофонд. Каждая популяция характеризуется определенным генофондом, т.е. совокупным количеством генетического материала, который слагается из генотипов отдельных особей.

Необходимыми предпосылками эволюционного процесса являются возникновение элементарных изменений аппарата наследственности - мутаций, их распространение и закрепление в генофондах популяций организмов. Направленные изменения генофондов популяций под воздействием различных факторов представляют собой элементарные эволюционные изменения.

Как уже отмечалось, природные популяции в разных частях ареала вида обычно более или менее различны. Внутри каждой популяции имеет место свободное скрещивание особей. В результате каждая популяция характеризуется собственным генофондом с присущими только данной популяции соотношениями различных аллелей.

Мутационный процесс - постоянный источник наследственной изменчивости. В популяции, состоящей из нескольких миллионов особей, в каждом поколении может возникать по нескольку мутаций буквально каждого имеющегося в этой популяции гена. Благодаря комбинативной изменчивости мутации распространяются в популяции.

Природные популяции насыщены самыми разнообразными мутациями. На это обратил внимание русский ученый Сергей Сергеевич Четвериков (1880-1959), который установил, что значительная часть изменчивости генофонда скрыта от глаз, так как подавляющее большинство возникающих мутаций рецессивны и не проявляются внешне. Рецессивные мутации как бы «впитываются видом в гетерозиготном состоянии», ведь большинство организмов гетерозиготно по многим генам. Подобную скрытую изменчивость можно выявить в экспериментах со скрещиванием близкородственных особей. При таком скрещивании некоторые рецессивные аллели, находившиеся в гетерозиготном и потому скрытом состоянии, перейдут в гомозиготное состояние и смогут проявиться.

Значительная генетическая изменчивость природных популяций легко обнаруживается и в ходе искусственного отбора. При искусственном отборе из популяции выбирают тех особей, у которых какие-либо ценные в хозяйственном отношении признаки выражены наиболее сильно, и скрещивают этих особей между собой, Искусственный отбор оказывается эффективным почти во всех случаях, когда к нему прибегают. Следовательно, в популяциях имеется генетическая изменчивость буквально по каждому признаку данного организма.

Силы, вызывающие генные мутации, действуют случайным образом. Вероятность появления мутантной особи в среде, в которой отбор будет ей благоприятствовать, не больше, чем в среде, в которой она почти наверняка погибнет. С.С. Четвериков показал, что за редким исключением большинство вновь возникших мутаций оказываются вредными и в гомозиготном состоянии, как правило, снижают жизнеспособность особей. Они сохраняются в популяциях лишь благодаря отбору в пользу гетерозигот. Однако мутации, вредные в одних условиях, могут повысить жизнеспособность в других условиях. Так, мутация, вызывающая недоразвитие или полное отсутствие крыльев у насекомых, безусловно, вредна в обычных условиях, и бескрылые особи быстро вытесняются нормальными. Но на океанических островах и горных перевалах, где дуют сильные ветры, такие насекомые имеют преимущества перед особями с нормально развитыми крыльями.

Поскольку всякая популяция обычно хорошо приспособлена к своей среде обитания, крупные изменения обычно снижают эту приспособленность, подобно тому как значительные случайные изменения в механизме часов (удаление какой-нибудь пружины или добавление колесика) ведут к сбою в их работе. В популяциях имеются большие запасы таких аллелей, которые не приносят ей какой-либо пользы в данном месте или в данное время; они сохраняются в популяции в гетерозиготном состоянии, пока в результате изменения условий среды вдруг не окажутся полезными. Как только это случается, их частота под действием отбора начинает возрастать, и в конечном счете они становятся основным генетическим материалом. Именно в этом кроется способность популяции адаптироваться, т.е. приспосабливаться к новым факторам - изменениям климата, появлению нового хищника или конкурента и даже к загрязнению среды человеком.

Примером подобной адаптации служит эволюция видов насекомых, устойчивых к инсектицидам. События во всех случаях развиваются одинаково: при введении в практику нового инсектицида (яда, действующего на насекомых) для успешной борьбы с насекомым-вредителем бывает достаточно небольшого его количества. С течением времени концентрацию инсектицида приходится повышать, пока, наконец, он не оказывается недейственным. Первое сообщение об устойчивости насекомого к инсектициду появилось в 1947 г. и относилось к устойчивости комнатной мухи к ДДТ. Впоследствии устойчивость к одному или нескольким инсектицидам была обнаружена не менее чем у 225 видов насекомых и других членистоногих. Гены, способные обеспечить устойчивость к инсектицидам, очевидно, имелись в каждой из популяций этих видов; их действие и обеспечило в конечном итоге снижение эффективности ядов, использованных для борьбы с вредителями.

Таким образом, мутационный процесс создает материал для эволюционных преобразований, формируя резерв наследственной изменчивости в генофонде каждой популяции и виде в целом. Поддерживая высокую степень генетического разнообразия популяций, он создает основу для действия естественного отбора и микроэволюции.

Размещено на Allbest.ru

Подобные документы

    Сущность и источники генетической изменчивости в природных популяциях. Характеристика комбинативного и мутационного видов наследственной изменчивости. Особенности фенотипической изменчивости, происходящей в результате влияния условий окружающей среды.

    курсовая работа , добавлен 14.09.2011

    Микроэволюция как процесс преобразования генетической структуры популяций под действием факторов эволюции. Элементарная единица эволюции и её характеристики. Особенности популяций, их генетический состав. Элементарные эволюционные факторы, мутации.

    реферат , добавлен 09.12.2013

    Модификационная изменчивость - процесс взаимосвязи организма со средой; популяции и чистые линии; фенотип и генотип. Мутационная изменчивость: типы, классификация. Закон гомологических рядов в наследственной изменчивости, использование в селекции.

    курсовая работа , добавлен 09.06.2011

    Популяции и их свойства: самовоспроизводимость, генетическая изменчивость, рождаемость, смертность, эмиграция, иммиграция. Закономерности и типы динамики численности популяций. Плодовитость насекомых и способность их к размножению - биотический потенциал.

    реферат , добавлен 12.08.2015

    Различия в строении, размножении и поведении особей, обусловленные разными условиями среды обитания популяций. Численность особей в популяциях, ее изменение во времени. Возрастной состав популяции, возможность ее прогнозирования на ближайший ряд лет.

    презентация , добавлен 26.02.2015

    Прогресс как направление эволюции. Развитие от архантропов до неоантропов. Корреляции и координации систем и органов в филогенезе. Мутационный процесс как фактор микроэволюции. Специализация и ее роль в эволюции. Правило прогрессивной специализации.

    контрольная работа , добавлен 08.06.2013

    Понятие и функции изменчивости как способности живых организмов приобретать новые признаки и свойства, значение данного процесса в приспособлении к изменяющимся условиям среды обитания. Понятие и характер, этапы протекания мутационной изменчивости.

    презентация , добавлен 30.11.2013

    Проведение гибридологического анализа на примере гороха. Период цветения и методика скрещивания. Методика проведения скрещивания у злаковых (пшеницы и ржи). Оценка плодовитости растений по пыльцевым зернам. Генетический полиморфизм популяций растений.

    практическая работа , добавлен 05.12.2013

    Генетика как наука о законах и механизмах наследственности и изменчивости, ее развитие. Современные формулировки законов Менделя. Открытие ДНК швейцарским ученым Иоганном Фридрихом Мишером в 1869 г. Свойства генетического кода. Стадии репродукции вирусов.

    презентация , добавлен 14.08.2015

    Изучение пространственного распределения, сезонной численности и развития бабочки мнемозины на территории национального парка "Русский Север". Характеристика половой структуры популяции и морфологической изменчивости имаго по метрическим признакам.